Skip to main content
Log in

Effect of the cytoplasmic male sterility type on the chlorophyll content in the leaves of grain sorghum hybrids

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

New types of CMS-inducing cytoplasms cannot be applied to hybrid sorghum breeding without the knowledge of their effects on major biological and commercial plant traits. In our studies of F1 hybrids, obtained by crossing two sets of isonuclear CMS lines (with the nuclear genomes of cv. Pishchevoe 614 (P614) and Zheltozernoe 10 (Zh10)) to two pollen parents (cv. Pishchevoe 35 (P35) and Mercury), we focused our attention on the effects of A3, A4, 9E, and M35-1A cytoplasms on the chlorophyll content at different developmental stages of sorghum plants. It was found that hybrids with different types of male-sterile cytoplasm differed in chlorophyll content, and the genotypes of the CMS line and the pollen parent influenced the manifestation of cytoplasmic differences. In the F1 hybrids obtained with CMS lines possessing the P614 genome, the sterile M35-1A cytoplasm increased the chlorophyll a content in comparison to the 9E cytoplasm. In the F1 hybrids obtained with CMS lines with the Zh10 genome and the P35 pollen parent, the sterile A4 cytoplasm increased the sum of chlorophyll a and b, in comparison to the A3 and 9E cytoplasms, whereas no differences were recorded in the F1 hybrids obtained with Mercury. The F1 hybrids obtained with CMS lines with the P614 genome showed heterosis for total chlorophyll content at the tillering stage. Overdominance of this trait was observed in hybrids with the M35-1A cytoplasm; the heterosis exceeded the analogous indices in the 9E cytoplasm by 19.0%, and the hypothetical heterosis, by 20.6%. These data demonstrate that the application of new types of CMS-inducing cytoplasms allows raising F1 hybrids with heterosis for chlorophyll content. Thus, such types can be used to increase hybrid productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrianova, Yu.E. and Tarchevskii, I.A., Khlorofill i produktivnost’ rastenii (Chlorophyll and Plant Productivity), Moscow, 2000.

    Google Scholar 

  • Amiri Behzadi, A., Satyavathi, C., Singh, S., Bharadwaj, C., and Singh, M., Estimation of heterosis in diverse cytoplasmic male sterile sources of Pearl millet [Pennisetum glaucum (L.) R. Br.], Ann. Agric. Res., 2012, vol. 33, no. 4, pp. 220–227.

    Google Scholar 

  • Aruna, C., Shrotria, P.K., Pahuja, S.K., Umakanth, A.V., Bhat, B.V., Devender, A.V., and Patil, J.V., Fodder yield and quality in forage sorghum: Scope for improvement though diverse male sterile cytoplasms, Crop Pasture Sci., 2013, vol. 63, no. 12, pp. 1114–1123. doi 10.1017/cp12215

    Article  Google Scholar 

  • Blanco, N.E., Guinea-Diaz, M., Whelan, J., and Strand, A., Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2014, vol. 369, p. 1640. doi 10.1098/rstb.2013.0231

    Article  Google Scholar 

  • Bollivar, D.W., Recent advances in chlorophyll biosynthesis, Photosynth. Res., 2006, vol. 89, no. 3, pp. 1–22. doi 10.1007/s11120-006-9076-6

    Google Scholar 

  • Chamola, R., Balyan, H., and Bhat, S., Effect of alien cytoplasm and fertility restorer genes on agronomic and physiological traits of Brassica juncea L. Czern., Plant Breed., 2013, vol. 132, no. 6, pp. 681–687. doi 10.1111/pbr.12080

    Article  CAS  Google Scholar 

  • Chi, W., Sun, X., and Zhang, L., Intracellular signaling from plastid to nucleus, Annu. Rev. Plant Biol., 2013, vol. 64, pp. 559–582. doi 10.1146/annurev-arplant-050312-120147

    Article  CAS  PubMed  Google Scholar 

  • Delorme, V., Keen, C.L., Rai, K.N., and Leaver, C.J., Cytoplasmic-nuclear male sterility in pearl millet: Comparative RFLP and transcript analyses of isonuclear male-sterile lines, Theor. Appl. Genet., 1997, vol. 95, no. 5, pp. 961–968. doi 10.1007/s001220050648

    Article  CAS  Google Scholar 

  • Dospekhov, B.A., Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul’tatov issledovanii) (Field Experiment Methods (with the Basics of Statistical Processing of Study Results)), Moscow, 2011.

    Google Scholar 

  • Eckhardt, U., Grimm, B., and Hörtensteiner, S., Recent advances in chlorophyll biosynthesis and breakdown in higher plants, Plant Mol. Biol., 2004, vol. 56, no. 1, pp. 1–14. doi 10.1007/s11103-004-2331-3

    Article  CAS  PubMed  Google Scholar 

  • El’konin, L.A., Kozhemyakin, V.V., and Ishin, A.G., Using the new CMS-inducing cytoplasms to create early ripening sorghum lines with male sterility, Dokl. Ross. Akad. S-kh. Nauk, 1997, vol. 2, pp. 7–9.

    Google Scholar 

  • El’konin, L.A., Kozhemyakin, V.V., and Ishin, A.G., Nuclear-cytoplasmic interactions in fertility restoration in sorghum: Alternative CMS-inducing cytoplasms, Int. Sorghum Millet Newslett., 1995, vol. 36, pp. 75–76.

    Google Scholar 

  • El’konin, L.A., Kozhemyakin, V.V., and Ishin, A.G., Comparative analysis of restoration of male-sterile(CMS)-inducing cytoplasms A3 and M35-1, Int. Sorghum Millet Newslett., 1997, vol. 38, pp. 29–30.

    Google Scholar 

  • Ermakov, A.I., Metody biokhimicheskikh issledovanii rastenii (Methods of Biochemical Research of Plants), Leningrad, 1987.

    Google Scholar 

  • Frankel, R., Scowcroft, W.R., and Whitfeld, P.R., Chloroplast DNA variation in isonuclear male-sterilelines of Nicotiana, Mol. Gen. Genet., 1979, vol. 169, pp. 129–135.

    Article  CAS  Google Scholar 

  • Fujii, S., Komatsu, S., and Toriyama, K., Retrograde regulation of nuclear gene expressionin in CW-CMS of rice, Plant Mol. Biol., 2007, vol. 63, pp. 405–417. doi 10.1007/s11103-006-9097-8

    Article  CAS  PubMed  Google Scholar 

  • Guzhov, Yu.L., Fuks, A., and Valichek, P., Selektsiya i semenovodstvo kul’tiviruemykh rastenii (Breeding and Seed Growing in Cultivated Plants), Moscow, 1999.

    Google Scholar 

  • Heng, S., Wei, C., Jing, B., Wan, Z., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., and Shen, J., Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288, BMC Genomics, 2014, vol. 15, pp. 322–334. doi 10.1186/1471-2164-15-322

    Article  PubMed  PubMed Central  Google Scholar 

  • Kibal’nik, O.P. and El’konin, L.A., Effect of sterile cytoplasm types on pigment content in leaves of F1 grain sorghum hybrids, Russ. Agric. Sci., 2009, vol. 35, no. 1, pp. 20–23.

    Article  Google Scholar 

  • Lopez-Juez, E. and Pyke, K.A., Plastids unleashed: Their development and their integration in plant development, Int. J. Dev. Biol., 2005, vol. 49, nos. 5–6, pp. 557–577. doi 10.1387/ijdb.051997el

    Article  CAS  PubMed  Google Scholar 

  • Masuda, T. and Fujita, Y., Regulation and evolution of chlorophyll metabolism, Photochem. Photobiol. Sci., 2008, vol. 7, no. 10, pp. 131–1. doi 10.1039/b807210h

    Google Scholar 

  • Moran, J.L. and Rooney, W.L., Effect of cytoplasm on the agronomic performance of grain Sorghum hybrids, Crop Sci., 2003, vol. 43, pp. 777–781. doi 10.2135/cropsci2003.0777

    Article  Google Scholar 

  • Pogson, B.J. and Albrecht, V., Genetic dissection of chloroplast biogenesis and development: An overview, Plant Physiol., 2011, vol. 155, pp. 1545–1551. doi 10.1104/pp.110.170365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pring, D.R., Tang, H.V., and Schertz, K.F., Cytoplasmic male sterility and organelle DNAs of sorghum, in The Molecular Biology of Plant Mitochondria, Levings, C.S. and Vasil, I.K., Eds., Dordrecht: Kluwer Acad. Publ., 1995.

    Google Scholar 

  • Reddy, B.V.S., Ramesh, S., and Ortiz, R., Genetic and cytoplasmic-nuclear male sterility in Sorghum, in Plant Breeding Reviews, Janik, J., Ed., Hoboken, New Jersy: Willey & Sons, Inc., 2005, vol. 25, pp. 139–169. doi 10.1002/9780470650301.ch6

    Google Scholar 

  • Satyavathi, C., Begum, S., Singh, B., Unnikrishnan, K., and Bharadwaj, C., Analysis of diversity among cytoplasmic male sterile sources and their utilization in developing F1 hybrids in Pearl millet [Pennisetum glaucum (R.) Br], Indian J. Genet. Plant Breed., 2009, vol. 69, no. 4, pp. 352–360.

    CAS  Google Scholar 

  • Shimkevich, A.M., Makarov, V.N., Goloenko, I.M., and Davydenko, O.G., The functional state of the photosynthetic apparatus in alloplastic barley lines, Ekol. Genet., 2006, vol. 4, no. 2, pp. 37–42.

    Google Scholar 

  • Tanaka, Y., Tsuda, M., Yasumoto, K., Yamagishi, H., and Terachi, T., A complete of Ogura-typemale-starile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.), BMC Genomics, 2012, vol. 13, pp. 352–363. doi 10.1186/1471-2164-13-352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, S., Sun, Y., Zang, H., Gu, Y., Lu, J., Tian, S., Yu, B., and Gu, M., Comparison on the characteristics of the isonuclear alloplasmic CMS lines in japonica Rice, Chin. J. Rice Sci., 2005, vol. 19, no. 6, pp. 521–526.

    Google Scholar 

  • Yurina, N.P. and Odintsova, M.S., Signal systems of plants. Plastid signals and their role in nuclear gene expression, Fiziol. Rast., 2007, vol. 54, no. 4, pp. 485–498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Kibalnik.

Additional information

Original Russian Text © O.P. Kibalnik, L.A. Elkonin, 2015, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2015, Vol. 19, No. 5, pp. 538–544.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibalnik, O.P., Elkonin, L.A. Effect of the cytoplasmic male sterility type on the chlorophyll content in the leaves of grain sorghum hybrids. Russ J Genet Appl Res 6, 520–526 (2016). https://doi.org/10.1134/S2079059716050051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059716050051

Keywords

Navigation