Skip to main content
Log in

The Role of Sestrins in the Regulation of the Cellular Response to Stress

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

This review is devoted to the analysis of proteins of the sestrin family and their role in the response of cells to stress. The paper describes the structure and functions of sestrins and their key role in the regulation of mTOR kinase and metabolism. In addition, the functions of sestrins in the regulation of aging and age-related diseases are considered in detail in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abe, T., Makino, N., Furukawa, T., et al., Identification of three commonly deleted regions on chromosome arm 6q in human pancreatic cancer, Genes, Chromosomes Cancer, 1999, vol. 25, no. 1, pp. 60–64.

    Article  CAS  PubMed  Google Scholar 

  2. Andrysik, Z., Galbraith, M.D., Guarnieri, A.L., et al., Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity, Genome Res., 2017, vol. 27, no. 10, pp. 1645–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bae, S.H., Sung, S.H., Oh, S.Y., et al., Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage, Cell Metab., 2013, vol. 17, no. 1, pp. 73–84.

    Article  CAS  PubMed  Google Scholar 

  4. Bar-Peled, L., Chantranupong, L., Cherniack, A.D., et al., A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1, Science, 2013, vol. 340, no. 6136, pp. 1100–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ben-Sahra, I., Dirat, B., Laurent, K., et al., Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death, Cell Death Differ., 2013, vol. 20, no. 4, pp. 611–619.

    Article  CAS  PubMed  Google Scholar 

  6. Brace, L.E., Vose, S.C., Stanya, K., et al., Increased oxidative phosphorylation in response to acute and chronic DNA damage, N.P.J. Aging Mech. Dis., 2016, vol. 2, art. ID 16022.

  7. Bruning, A., Rahmeh, M., and Friese, K., Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation, Mol. Oncol., 2013, vol. 7, no. 6, pp. 1012–1018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bryk, R., Lima, C. D., Erdjument-Bromage, H., et al., Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein, Science, 2002, vol. 295, no. 5557, pp. 1073–1077.

    Article  CAS  PubMed  Google Scholar 

  9. Budanov, A.V., Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling, Antioxid. Redox Signaling, 2011, vol. 15, no. 6, pp. 1679–1690.

    Article  CAS  Google Scholar 

  10. Budanov, A.V., Sestrins link tumor suppressors with the AMPK-MTOR signaling network, in Protein Phosphorylation in Human Health, Huang, C., Ed., Nvi Sad: InTech, 2012, pp. 51–96.

    Google Scholar 

  11. Budanov, A.V., SESTRINs regulate mTORC1 via RRAGs: the riddle of GATOR, Mol. Cell. Oncol., 2015, vol. 2, no. 3, art. ID e997113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Budanov, A.V. and Karin, M., p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling, Cell, 2008, vol. 134, no. 3, pp. 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Budanov, A.V., Lee, J.H., and Karin, M., Stressin’ sestrins take an aging fight, EMBO Mol. Med., 2010, vol. 2, no. 10, pp. 388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Budanov, A.V., Shoshani, T., Faerman, A., et al., Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability, Oncogene, 2002, vol. 21, no. 39, pp. 6017–6031.

    Article  CAS  PubMed  Google Scholar 

  15. Budanov, A.V., Sablina, A.A., Feinstein, E., et al., Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD, Science, 2004, vol. 304, no. 5670, pp. 596–600.

    Article  CAS  PubMed  Google Scholar 

  16. Byun, J.K., Choi, Y.-K., Kim, J.-H., et al., A positive feedback loop between Sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells, Cell Rep., 2017, vol. 20, no. 3, pp. 586–599.

    Article  CAS  PubMed  Google Scholar 

  17. Carvalho, B., Seruca, R., Buys, C.H.C.M., and Kok, K., Novel expressed sequences obtained by means of a suppression subtractive hybridisation analysis from the 6q21 region that is frequently deleted in gastric cancer, Eur. J. Cancer, 2002, vol. 38, no. 8, pp. 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  18. Chantranupong, L., Wolfson, R.L., Orozco, J.M., et al., The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1, Cell Rep., 2014, vol. 9, no. 1, pp. 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, C.C., Jeon, S.M., Bhaskar, P.T., et al., FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor, Dev. Cell, 2010, vol. 18, no. 4, pp. 592–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, K.B., Xuan, Y., Shi, W.-J., et al., Sestrin2 expression is a favorable prognostic factor in patients with non-small cell lung cancer, Am. J. Transl. Res., 2016, vol. 8, no. 4, pp. 1903–1909.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y.-S., Chen, S.-D., Wu, C.-L., et al., Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture, Exp. Neurol., 2014, vol. 253, pp. 63–71.

    Article  CAS  PubMed  Google Scholar 

  22. Cornu, M., Albert, V., and Hall, M.N., mTOR in aging, metabolism, and cancer, Curr. Opin. Genet. Dev., 2013, vol. 23, no. 1, pp. 53–62.

    Article  CAS  PubMed  Google Scholar 

  23. Cuadrado, A., Rojo, A.I., Wells, G., et al., Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases, Nat. Rev. Drug Discovery, 2019, vol. 18, no. 4, pp. 295–317.

    Article  CAS  PubMed  Google Scholar 

  24. Dalina, A.A., Kovaleva, I.E., and Budanov, A.V., Sestrins are gatekeepers in the way from stress to aging and disease, Mol. Biol., 2018, vol. 52, no. 6, pp. 948–962.

    Article  CAS  Google Scholar 

  25. D’Autreaux, B. and Toledano, M.B., ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, no. 10, pp. 813–824.

    Article  PubMed  CAS  Google Scholar 

  26. Ding, B., Parmigiani, A., Yang, C., and Budanov, A.V., Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation, Cell Cycle, 2015, vol. 14, no. 20, pp. 3231–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding, B., Parmigiani, A., Divakaruni, A.S., et al., Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death, Sci. Rep., 2016, vol. 6, art. ID 22538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Doonan, F., Wallace, D.M., O’Driscoll, C., and Cotter, T.G., Rosiglitazone acts as a neuroprotectant in retinal cells via up-regulation of sestrin-1 and SOD-2, J. Neurochem., 2009, vol. 109, no. 2, pp. 631–643.

    Article  CAS  PubMed  Google Scholar 

  29. Ebnoether, E., Ramseier, A., Cortada, M., et al., Sesn2 gene ablation enhances susceptibility to gentamicin-induced hair cell death via modulation of AMPK/mTOR signaling, Cell Death Discovery, 2017, vol. 3, art. ID 17024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eid, A.A., Lee, D.-Y., Roman, L.J., et al., Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression, Mol. Cell Biol., 2013, vol. 33, no. 17, pp. 3439–3460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eijkelenboom, A. and Burgering, B.M., FOXOs: signalling integrators for homeostasis maintenance, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 2, pp. 83–97.

    Article  CAS  PubMed  Google Scholar 

  32. Fischer, M., Census and evaluation of p53 target genes, Oncogene, 2017, vol. 36, no. 28, pp. 3943–3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gan, X., Wang, J., Su, B., and Wu, D., Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate, J. Biol. Chem., 2011, vol. 286, no. 13, pp. 10998–11002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garaeva, A.A., Kovaleva, I.E., Chumakov, P.M., and Evstafieva, A.G., Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4, Cell Cycle, 2016, vol. 15, no. 1, pp. 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Green, D.R., Galluzzi, L., and Kroemer, G., Mitochondria and the autophagy-inflammation-cell death axis in organismal aging, Science, 2011, vol. 333, no. 6046, pp. 1109–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hagenbuchner, J., Kuznetsov, A., Hermann, M., et al., FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3, J. Cell Sci., 2012, vol. 125, no. 5, pp. 1191–1203.

    Article  CAS  PubMed  Google Scholar 

  37. Hatano, N., Nishikawa, N.S., McElgunn, C., et al., A comprehensive analysis of loss of heterozygosity caused by hemizygous deletions in renal cell carcinoma using a subtraction library, Mol. Carcinog., 2001, vol. 31, no. 3, pp. 161–170.

    Article  CAS  PubMed  Google Scholar 

  38. Heidler, J., Fysikopoulos, A., Wempe, F., et al., Sestrin-2, a repressor of PDGFRβ signalling, promotes cigarette-smoke-induced pulmonary emphysema in mice and is upregulated in individuals with COPD, Dis. Models Mech., 2013, vol. 6, no. 6, pp. 1378–1387.

    CAS  Google Scholar 

  39. Hou, Y.S., Guan, J.-J., Xu, H.-D., et al., Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation, Mol. Cell Biol., 2015, vol. 35, no. 16, pp. 2740–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hwang, H.-J., Jung, T.W., Choi, J.-H., et al., Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism, Biochim. Biophys. Acta, 2017, vol. 1863, no. 6, pp. 1436–1444.

    Article  CAS  Google Scholar 

  41. Jegal, K.H., Park, W., Cho, S.S., et al., Activating transcription factor 6-dependent sestrin 2 induction ameliorates ER stress-mediated liver injury, Biochim. Biophys. Acta, 2017, vol. 1864, no. 7, pp. 1295–1307.

    Article  CAS  Google Scholar 

  42. Jeong, W., Bae, S.H., Toledano, M.B., and Rhee, S.G., Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression, Free Radical Biol. Med., 2012, vol. 53, no. 3, pp. 447–456.

    Article  CAS  Google Scholar 

  43. Johnson, M.R., Behmoaras, J., Bottolo, L., et al., Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus, Nat. Commun., 2015, vol. 6, art. ID 6031.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, S.C., Rabinovitch, P.S., and Kaeberlein, M., mTOR is a key modulator of ageing and age-related disease, Nature, 2013, vol. 493, no. 7432, pp. 338–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kallenborn-Gerhardt, W., Lu, R., Syhr, K.M.J., et al., Antioxidant activity of sestrin 2 controls neuropathic pain after peripheral nerve injury, Antioxid. Redox Signaling, 2013, vol. 19, no. 17, pp. 2013–2023.

    Article  CAS  Google Scholar 

  46. Kamata, H., Honda, S.-I., Maeda, S., et al., Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases, Cell, 2005, vol. 120, no. 5, pp. 649–661.

    Article  CAS  PubMed  Google Scholar 

  47. Kastenhuber, E.R. and Lowe, S.W., Putting p53 in context, Cell, 2017, vol. 170, no. 6, pp. 1062–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, H., An, S., Ro, S.H., et al., Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains, Nat. Commun., 2015, vol. 6, art. ID 10025.

    Article  CAS  PubMed  Google Scholar 

  49. Kim, J.-R., Lee, S.-R., Chung, H.L., et al., Identification of amyloid beta-peptide responsive genes by cDNA microarray technology: involvement of RTP801 in amyloid beta-peptide toxicity, Exp. Mol. Med., 2003, vol. 35, no. 5, pp. 403–411.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, M.G., Yang, J.H., Kim, K.M., et al., Regulation of Toll-like receptor-mediated Sestrin2 induction by AP-1, Nrf2, and the ubiquitin-proteasome system in macrophages, Toxicol. Sci., 2015, vol. 144, no. 2, pp. 425–435.

    Article  CAS  PubMed  Google Scholar 

  51. Kim, M.J., Bae, S.H., Ryu, J.-C., et al., SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages, Autophagy, 2016, vol. 12, no. 8, pp. 1272–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kimball, S.R., Gordon, B.S., Moyer, J.E., et al., Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation, Cell Signaling, 2016, vol. 28, no. 8, pp. 896–906.

    Article  CAS  Google Scholar 

  53. Kourtis, N. and Tavernarakis, N., Cellular stress response pathways and ageing: intricate molecular relationships, EMBO J., 2011, vol. 30, no. 13, pp. 2520–2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kruiswijk, F., Labuschagne, C.F., and Vousden, K.H., p53 in survival, death and metabolic health: a lifeguard with a licence to kill, Nat. Rev. Mol. Cell Biol., 2015, vol. 16, no. 7, pp. 393–405.

    Article  CAS  PubMed  Google Scholar 

  55. Kinnula, V.L., Paakko, P., and Soini, Y., Antioxidant enzymes and redox regulating thiol proteins in malignancies of human lung, FEBS Lett., 2004, vol. 569, nos. 1–3, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  56. Kopnin, P.B., Agapova, L.S., Kopnin, B.P., and Chumakov, P.M., Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability, Cancer Res., 2007, vol. 67, no. 10, pp. 4671–4678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lane, D.P., Cancer. p53, guardian of the genome, Nature, 1992, vol. 358, no. 6381, pp. 15–16.

    Article  CAS  PubMed  Google Scholar 

  58. Lanna, A., Gomes, D.C.O., Muller-Durovic, B., et al., A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging, Nat. Immunol., 2017, vol. 18, pp. 354–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, J.H., Budanov, A.V., Park, E.J., et al., Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies, Science, 2010, vol. 327, no. 5970, pp. 1223–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, J.H., Budanov, A.V., Talukdar, S., et al., Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3, Cell Metab., 2012, vol. 16, no. 3, pp. 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, J.H., Budanov, A.V., and Karin, M., Sestrins orchestrate cellular metabolism to attenuate aging, Cell Metab., 2013, vol. 18, no. 6, pp. 792–801.

    Article  CAS  PubMed  Google Scholar 

  62. Lehmann, S., Ogawa, S., Raynaud, S.D., et al., Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia, Cancer, 2008, vol. 112, no. 6, pp. 1296–1305.

    Article  CAS  PubMed  Google Scholar 

  63. Leister, I., Weith, A., Brüderlein, S., et al., Human colorectal cancer: high frequency of deletions at chromosome 1p35, Cancer Res., 1990, vol. 50, no. 22, pp. 7232–7235.

    CAS  PubMed  Google Scholar 

  64. Levine, A.J., p53, the cellular gatekeeper for growth and division, Cell, 1997, vol. 88, no. 3, pp. 323–331.

    Article  CAS  PubMed  Google Scholar 

  65. Li, D.D., Sun, T., Wu, X.-Q., et al., The inhibition of autophagy sensitises colon cancer cells with wild-type p53 but not mutant p53 to topotecan treatment, PLoS One, 2012, vol. 7, no. 9, art. ID e45058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, S.Y., Lee, Y.J., and Lee, T.C., Association of platelet-derived growth factor receptor beta accumulation with increased oxidative stress and cellular injury in sestrin 2 silenced human glioblastoma cells, FEBS Lett., 2011, vol. 585, no. 12, pp. 1853–1858.

    Article  CAS  PubMed  Google Scholar 

  67. Lopez-Otin, C., Blasco, M.A., Partridge, L., et al., The hallmarks of aging, Cell, 2013, vol. 153, no. 6, pp. 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Majd, S., Power, J.H., and Grantham, H.J., Neuronal response in Alzheimer’s and Parkinson’s disease: the effect of toxic proteins on intracellular pathways, BMC Neurosci., 2015, vol. 16, art. ID 69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Manning, B.D. and Toker, A., AKT/PKB signaling: navigating the network, Cell, 2017, vol. 169, no. 3, pp. 381–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martindale, J.L. and Holbrook, N.J., Cellular response to oxidative stress: signaling for suicide and survival, J. Cell Physiol., 2002, vol. 192, no. 1, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  71. Mizushima, N., Autophagy: process and function, Genes Dev., 2007, vol. 21, no. 22, pp. 2861–2873.

    Article  CAS  PubMed  Google Scholar 

  72. Mizumura, K., Cloonan, S.M., Nakahira, K., et al., Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD, J. Clin. Invest., 2014, vol. 124, no. 9, pp. 3987–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morrison, A., Chen, L., Wang, J., et al., Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart, FASEB J., 2015, vol. 29, no. 2, pp. 408–417.

    Article  CAS  PubMed  Google Scholar 

  74. Nagai, H., Negrini, M., Carter, S.L., et al., Detection and cloning of a common region of loss of heterozygosity at chromosome 1p in breast cancer, Cancer Res., 1995, vol. 55, no. 8, pp. 1752–1757.

    CAS  PubMed  Google Scholar 

  75. Nogueira, V., Park, Y., Chen, C.C., et al., Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis, Cancer Cell, 2008, vol. 14, no. 6, pp. 458–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oricchio, E., Katanayeva, N., Donaldson, M.C., et al., Genetic and epigenetic inactivation of SESTRIN1 controls mTORC1 and response to EZH2 inhibition in follicular lymphoma, Sci. Transl. Med., 2017, vol. 9, no. 396, pp. eaak9969.

  77. Papadia, S., Soriano, F.X., Léveillé, F., et al., Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses, Nat. Neurosci., 2008, vol. 11, no. 4, pp. 476–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, H.-W., Park, H., Ro, S.-H., et al., Hepatoprotective role of Sestrin2 against chronic ER stress, Nat. Commun., 2014, vol. 5, art. ID 4233.

    Article  CAS  PubMed  Google Scholar 

  79. Parmigiani, A. and Budanov, A.V., Sensing the environment through sestrins: implications for cellular metabolism, Int. Rev. Cell Mol. Biol., 2016, vol. 327, pp. 1–42.

    Article  CAS  PubMed  Google Scholar 

  80. Parmigiani, A., Nourbakhsh, A., Ding, B., et al., Sestrins inhibit mTORC1 kinase activation through the GATOR complex, Cell Rep., 2014, vol. 9, no. 4, pp. 1281–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peeters, H., Debeer, P., Bairoch, A., et al., PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse, Hum. Genet., 2003, vol. 112, nos. 5–6, pp. 573–580.

    Article  CAS  PubMed  Google Scholar 

  82. Peng, M., Yin, N., and Li, M.O., Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling, Cell, 2014, vol. 159, no. 1, pp. 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng, M., Yin, N., and Li, M.O., SZT2 dictates GATOR control of mTORC1 signalling, Nature, 2017, vol. 543, no. 7645, pp. 433–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Polyak, K., Xia, Y., Zweier, J.L., et al., A model for p53-induced apoptosis, Nature, 1997, vol. 389, no. 6648, pp. 300–305.

    Article  CAS  PubMed  Google Scholar 

  85. Quan, N., Sun, W., Wang, L., et al., Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism, FASEB J., 2017, vol. 31, no. 9, pp. 4153–4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reddy, K., Cusak, C.L., Nnah, I., et al., Dysregulation of nutrient sensing and CLEARance in presenilin deficiency, Cell. Rep., 2016, vol. 14, no. 9, pp. 2166–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ro, S.-H., Xue, X., Ramakrishnan, S.K., et al., Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis, eLife, 2016, vol. 5, art. ID e12204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., et al., The antioxidant function of the p53 tumor suppressor, Nat. Med., 2005, vol. 11, no. 12, pp. 1306–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sancak, Y., Peterson, T.R., Shaul, Y.D., et al., The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1, Science, 2008, vol. 320, no. 5882, pp. 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sanli, T., Linher-Melville, K., Tsakiridis, T., and Singh, G., Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells, PLoS One, 2012, vol. 7, no. 2, art. ID e32035.

  91. Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M., Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex, Science, 2005, vol. 307, no. 5712, pp. 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  92. Saveljeva, S., Cleary, P., Mnich, K., et al., Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival, Oncotarget, 2016, vol. 7, no. 11, pp. 12254–12266.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Saxton, R.A. and Sabatini, D.M., mTOR signaling in growth, metabolism, and disease, Cell, 2017, vol. 168, no. 6, pp. 960–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saxton, R.A., Knockenhauer, K.E., Wolfson, R.L., et al., Structural basis for leucine sensing by the Sestrin2–mTORC1 pathway, Science, 2016, vol. 351, no. 6268, pp. 53–58.

    Article  CAS  PubMed  Google Scholar 

  95. Scheibye-Knudsen, M., Fang, E.F., Croteau, D.L., et al., Protecting the mitochondrial powerhouse, Trends Cell. Biol., 2015, vol. 25, no. 3, pp. 158–170.

    Article  CAS  PubMed  Google Scholar 

  96. Seo, K., Ki, S.H., and Shin, S.M., Sestrin2-AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity, Cell Signaling, 2015, vol. 27, no. 7, pp. 1533–1543.

    Article  CAS  Google Scholar 

  97. Settembre, C., Fraldi, A., Medina, D.L., Ballabio, A., et al., Signals from the lysosome: a control centre for cellular clearance and energy metabolism, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 5, pp. 283–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tao, R., Xiong, X., Liangpunsakul, S., Dong, X.C., et al., Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling, Diabetes, 2015, vol. 64, no. 4, pp. 1211–1223.

    Article  CAS  PubMed  Google Scholar 

  99. Thelander, E.F., Ichimura, K., Corcoran, M., et al., Characterization of 6q deletions in mature B cell lymphomas and childhood acute lymphoblastic leukemia, Leuk. Lymphoma, 2008, vol. 49, no. 3, pp. 477–487.

    Article  CAS  PubMed  Google Scholar 

  100. Tomasovic, A., Kurrle, N., Sürün, D., et al., Sestrin 2 protein regulates platelet-derived growth factor receptor β (Pdgfrβ) expression by modulating proteasomal and Nrf2 transcription factor functions, J. Biol. Chem., 2015, vol. 290, no. 15, pp. 9738–9752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tran, H., Brunet, A., Grenier, J.M., et al., DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein, Science, 2002, vol. 296, no. 5567, pp. 530–534.

    Article  CAS  PubMed  Google Scholar 

  102. Tsilioni, I., Filippidis, A.S., Kerenidi, T., et al., Sestrin-2 is significantly increased in malignant pleural effusions due to lung cancer and is potentially secreted by pleural mesothelial cells, Clin. Biochem., 2016, vol. 49, no. 9, pp. 726–728.

    Article  CAS  PubMed  Google Scholar 

  103. Velasco-Miguel, S., Buckbinder, L., Jean, P., et al., PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes, Oncogene, 1999, vol. 18, no. 1, pp. 127–137.

    Article  CAS  PubMed  Google Scholar 

  104. Walter, P. and Ron, D., The unfolded protein response: from stress pathway to homeostatic regulation, Science, 2011, vol. 334, no. 6059, pp. 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  105. Wei, C.L., Wu, Q., Vega, V.B., et al., A global map of p53 transcription-factor binding sites in the human genome, Cell, 2006, vol. 124, no. 1, pp. 207–219.

    Article  CAS  PubMed  Google Scholar 

  106. Wei, J.L., et al., Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer, Oncol. Rep., 2015, vol. 33, no. 3, pp. 1349–1357.

    Article  CAS  PubMed  Google Scholar 

  107. Wempe, F., De-Zolt, S., Koli, K., et al., Inactivation of sestrin 2 induces TGF-β signaling and partially rescues pulmonary emphysema in a mouse model of COPD, Dis. Models Mech., 2010, vol. 3, nos. 3–4, pp. 246–253.

    Article  CAS  Google Scholar 

  108. White, P.S., Kaufman, B.A., Marshall, H.N., and Brodeur, G.M., Use of the single-strand conformation polymorphism technique to detect loss of heterozygosity in neuroblastoma, Genes, Chromosomes Cancer, 1993, vol. 7, no. 2, pp. 102–108.

    Article  CAS  PubMed  Google Scholar 

  109. Wolfson, R.L., Chantranupong, L., Saxton, R.A., et al., Sestrin2 is a leucine sensor for the mTORC1 pathway, Science, 2016, vol. 351, no. 6268, pp. 43–48.

    Article  CAS  PubMed  Google Scholar 

  110. Wolfson, R.L. and Sabatini, D.M., The dawn of the age of amino acid sensors for the mTORC1 pathway, Cell Metab., 2017, vol. 26, no. 2, pp. 301–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wolfson, R.L., Chantranupong, L., Wyant, G.A., et al., KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1, Nature, 2017, vol. 543, no. 7645, pp. 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Woo, H.A., Bae, S.H., Park, S., and Rhee, S.G., Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins, Antioxid. Redox Signaling, 2009, vol. 11, no. 4, pp. 739–745.

    Article  CAS  Google Scholar 

  113. Wood, Z.A., Poole, L.B., and Karplus, P.A., Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling, Science, 2003, vol. 300, no. 5619, pp. 650–653.

    Article  CAS  PubMed  Google Scholar 

  114. Wullschleger, S., Loewith, R., and Hall, M.N., TOR signaling in growth and metabolism, Cell, 2006, vol. 124, no. 3, pp. 471–484.

    Article  CAS  PubMed  Google Scholar 

  115. Xu, C., Bailly-Maitre, B., and Reed, J.C., Endoplasmic reticulum stress: cell life and death decisions, J. Clin. Invest., 2005, vol. 115, no. 10, pp. 2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang, J.H., Kim, K.M., Kim, M.G., et al., Role of sestrin2 in the regulation of proinflammatory signaling in macrophages, Free Radic. Biol. Med., 2015, vol. 78, pp. 156–167.

    Article  CAS  PubMed  Google Scholar 

  117. Yang, K., Xu, C., Zhang, Y., et al., Sestrin2 suppresses classically activated macrophages-mediated inflammatory response in myocardial infarction through inhibition of mTORC1 signaling, Front. Immunol., 2017, vol. 8, art. ID 728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, Y.-L., Loh, K.-S., Liou, B.-Yu., et al., SESN-1 is a positive regulator of lifespan in Caenorhabditis elegans, Exp. Gerontol., 2013, vol. 48, no. 3, pp. 371–379.

    Article  CAS  PubMed  Google Scholar 

  119. Ye, J., Palm, W., Peng, M., et al., GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2, Gen. Dev., 2015, vol. 29, no. 22, pp. 2331–2336.

    Article  CAS  Google Scholar 

  120. Yeh, S.H., Chen, P.J., Chen, H.L., et al., Frequent genetic alterations at the distal region of chromosome 1p in human hepatocellular carcinomas, Cancer Res., 1994, vol. 54, no. 15, pp. 4188–4192.

    CAS  PubMed  Google Scholar 

  121. Yoshida, T., Mett, I., Bhunia, A.K., et al., Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema, Nat. Med., 2010, vol. 16, no. 7, pp. 767–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, C., Sun, W., Li, J., et al., Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea, Neuroscience, 2017, vol. 361, pp. 179–191.

    Article  CAS  PubMed  Google Scholar 

  123. Zhao, B., Shah, P., Budanov, A.V., et al., Sestrin2 protein positively regulates AKT enzyme signaling and survival in human squamous cell carcinoma and melanoma cells, J. Biol. Chem., 2014, vol. 289, no. 52, pp. 35806–35814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhao, B., Shah, P., Qiang, L. et al., Distinct role of Sesn2 in response to UVB-Induced DNA damage and UVA-induced oxidative stress in melanocytes, Photochem. Photobiol., 2017, vol. 93, no. 1, pp. 375–381.

    Article  CAS  PubMed  Google Scholar 

  125. Zeltukhin, A.O., Ilyinskaya, G.V., Budanov, A.V., and Chumakov, P.M., Some phenotypic characteristics of nematode Caenorhabditis elegans strain with defective functions of the sestrin (cSesn) gene, Biomed. Pharmacol. J., 2018, vol. 11, no. 2, pp. 759–767.

    Article  CAS  Google Scholar 

  126. Zhou, D., Zhan, C., Zhong, Q., and Li, S., Upregulation of sestrin-2 expression via P53 protects against 1-methyl-4-phenylpyridinium (MPP+)neurotoxicity, J. Mol. Neurosci., 2013, vol. 51, no. 3, pp. 967–975.

    Article  CAS  PubMed  Google Scholar 

  127. Zighelboim, I., Goodfellow, P.J., Schmidt, A.P., et al., Differential methylation hybridization array of endometrial cancers reveals two novel cancer-specific methylation markers, Clin. Cancer Res., 2007, vol. 13, no. 10, pp. 2882–2889.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks P.M. Chumakov for long-term cooperation and assistance in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Budanov.

Ethics declarations

The author declares that he has no conflicts of interest. This article does not contain any studies involving humans and animals as subjects of study.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budanov, A.V. The Role of Sestrins in the Regulation of the Cellular Response to Stress. Biol Bull Rev 12, 347–364 (2022). https://doi.org/10.1134/S2079086422040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422040028

Keywords:

Navigation