Skip to main content
Log in

Synthesis and properties of particle-filled and intercalated polymer nanocomposites

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

This paper analyzes available data on the synthesis and properties of polymer nanocomposites prepared by various techniques (sol-gel processing and microemulsion and frontal polymerizations) and containing polymethyl methacrylate, polydimethylsiloxane, natural rubber, and other polymers as binders, and various amounts of nano- and microadditives: SiO2, TiO2, FeO, clay, and Y1Ba2Cu3O7 − x . We consider the physicomechanical, dynamic mechanical, superconducting, thermophysical, thermochemical, and other properties of the polymer nanocomposites. Also examined are data on the activated anionic polymerization of ɛ-caprolactam in the presence of various amounts of SiO2 nanoparticles. Results on crystallization kinetics and electron microscopy data lead us to conclude that SiO2 nanoparticles act as heterogeneous nucleation centers for the crystallization of the forming poly(ɛ-caprolactam). Analysis of our results and data reported by other groups demonstrates that the intercalation of polymer macromolecules and their fragments into the interlayer spaces of ceramic grains increases the superconducting transition temperature of the ceramic by 1–3°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber, A.H., Cohen, S.R., and Wagner, H.D., Appl. Phys. Lett., 2003, vol. 82, p. 4140.

    Article  CAS  Google Scholar 

  2. Barber, A.H., Cohen, S.R., Kenig, S., and Wagner, H.D., Compos. Sci. Technol., 2004, vol. 64, p. 2283.

    Article  CAS  Google Scholar 

  3. Barber, A.H., Cohen, S.R., and Wagner, H.D., Phys. Rev. Lett., 2004, vol. 92, article no. 186 103.

  4. Kuoa, M.C., Tsaia, C.M., Huanga, J.C., and Chena, M., Mater. Chem. Phys., 2005, vol. 90, p. 185.

    Article  CAS  Google Scholar 

  5. Zhu, Y.Q., Sekine, T., Li, Y.H., Fay, M.W., Zhao, Y.M., Patrick, P.C.H., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 16263.

    Article  CAS  Google Scholar 

  6. Buchachenko, A.L., Usp. Khim., 2006, vol. 75, pp. 3–26.

    Article  CAS  Google Scholar 

  7. Wu, M. and Shaw, L., J. Appl. Polym. Sci., 2006, vol. 99, p. 477.

    Article  CAS  Google Scholar 

  8. Munaro, M., Brandt, T.R., and Leni, C.A., Morphological Characterization of LDPE / HDPE Blends by Dynamical Mechanical Analysis, Proc. World Polymer Congr.-Macro 2006, 41st Int. Symp. on Macromolecules, Rio de Janeiro, 2006.

  9. Vera Lúcia da Cunha Lapa, Patrícia Davies de Oliveira, John Duncan, Leila Léa Yuan Visconte, and Regina Celia Reis Nunes, Dynamic Properties in NBR/Cel II Nanocomposites, Proc. World Polymer Congr.-Macro 2006, 41st Int. Symp. on Macromolecules, Rio de Janeiro, 2006.

  10. Kontou, E. and Niaounakis, M., Polymer, 2006, no. 47, p. 1267.

  11. Zeng, X.F., Wang, W.Y., and Wang, G.Q.J.F, J. Mater. Sci., 2008, vol. 43, p. 3505.

    Article  CAS  Google Scholar 

  12. Tonoyan, A.O., Ketyan, A.G., Shik, K., and Davtyan, S.P., Khim. Zh. Arm., 2009, vol. 62, nos. 1–2, p. 201.

    CAS  Google Scholar 

  13. Davtyan, S.P., Berlin, A.A., Shik, K., Tonoyan, A.O., and Ragovina, S.Z., Ross. Nanotekhnol., 2009, vol. 4, nos. 7–8, p. 489.

    Article  Google Scholar 

  14. Tonoyan, A.O., Ketyan, A.G., Zakaryan, A.O., Sukiasyan, A.A., Sukiasyan, Zh.K., and Davtyan, S.P., Khim. Zh. Arm., 2010, vol. 63, p. 193.

    CAS  Google Scholar 

  15. Yonghong, R. and Sie Chin Tjong, e-Polymers, 2010, no. 109.

  16. Rabova, V. and Hron, P., e-Polymers, 2011, no. 091.

  17. Yingchun Li, Guosheng Hu, and Bin He, e-Polymers, 2011, no. 060.

  18. Yu, Y.-Y. and Chen, W.-C., Mater. Chem. Phys., 2003, vol. 82, p. 388.

    Article  CAS  Google Scholar 

  19. Liu, T., Burger, C., and Chu, B., Prog. Polym. Sci., 2003, vol. 28, p. 5.

    Article  Google Scholar 

  20. Ajayan, P.M., Schadler, L.S., and Braun, P.V., Nanocomposite Science and Technology, Weinheim: Wiley-VCH, 2003.

    Book  Google Scholar 

  21. Cao, G., Nanostructures and Nanomaterials: Synthesis, Properties and Applications, London: Imperial College Press, 2004.

    Book  Google Scholar 

  22. The Chemistry of Nanomaterials, Rao, C.N.R., Muller, A., and Cheetman, A.K., Eds., Weinheim: Wiley-VCH, 2004.

    Google Scholar 

  23. Fujimura, K., Ohkoshi, Y., Nagura, M., Akamatsu, K., Deki, S., and Gotoh, Y., Mater. Chem. Phys., 2004, vol. 83, p. 54.

    Article  CAS  Google Scholar 

  24. Nanoparticles, Schmid, G., Ed., New York: Wiley-Interscience, 2004.

    Google Scholar 

  25. Springer Handbook of Nanotechnology, Bhushan B., Ed., Berlin: Springer, 2004.

    Google Scholar 

  26. Pomogailo, A.D. and Kestelman, V., Metallopolymer Nanocomposites, Berlin: Springer, 2005.

    Google Scholar 

  27. Liu, P., Eur. Polym. J., 2005, vol. 41, p. 2693.

    Article  CAS  Google Scholar 

  28. Abdol-Reza Hajipour and Sakineh Habibi, e-Polymers, 2010, no. 012.

  29. Yibing Cai, Xiaolin Xu, Qufu Wei, Huizhen Ke, Wang Yao, Hui Qiao, Chuilin Lai, Guangfei He, Yong Zhao, and Hao Fong, e-Polymers, 2011, no. 018.

  30. Agabekov, V., Ivanova, N., Dlugunovich, V, and Vostchula, I., J. Nanomater., 2012, article ID 206384.

  31. Fan, X., Wang, F., Lu, X., Wang, M., Qiu, J., and Kawamoto, Y.T., Mater. Chem. Phys., 2003, vol. 82, p. 38.

    Article  CAS  Google Scholar 

  32. Wang, Z., Wang, J., and Zhang, H., Mater. Chem. Phys., 2004, vol. 87, p. 44.

    Article  CAS  Google Scholar 

  33. Peng, T., Huajun, L., Yang, H., and Ya, C., Mater. Chem. Phys., 2004, vol. 85, p. 68.

    Article  CAS  Google Scholar 

  34. Lu, C.-H., Hsu, W.-T., Huang, C.-H., Godbole, S.V., and Cheng, B.-M., Mater. Chem. Phys., 2005, vol. 90, p. 62.

    Article  CAS  Google Scholar 

  35. Vollath, D., Szabo, D.V., and Schlabach, S., J. Nanopart. Res., 2004, vol. 6, p. 181.

    Article  CAS  Google Scholar 

  36. Aharon, E., Albo, A., Kalina, M., and Frey, G.L., Adv. Funct. Mater., 2006, vol. 16, p. 980.

    Article  CAS  Google Scholar 

  37. Zhang Xiao-zhou, Jian Xi-gao, and Zu Li-wu. J. Nanomater., 2012, article ID 368236.

  38. Bissessur, R., Gallant, D., and Brüening, R., Mater. Chem. Phys., 2003, vol. 82, p. 316.

    Article  CAS  Google Scholar 

  39. Tsunoyama, H., Sakurai, H., Ichikuni, N., Negishi, Y., and Tsukuda, T., Langmuir, 2004, vol. 20, p. 11 293.

    Article  CAS  Google Scholar 

  40. Sonawane, R.S., Kale, B.B., and Dongare, M.K., Mater. Chem. Phys., 2004, vol. 85, p. 52.

    Article  CAS  Google Scholar 

  41. Chowdhury, D., Paul, A., and Chattopadhyay, A., Langmuir, 2005, vol. 21, p. 4123.

    Article  CAS  Google Scholar 

  42. Einage, H. and Harada, M., Langmuir, 2005, vol. 21, p. 2578.

    Article  CAS  Google Scholar 

  43. Bertoncello, P., Notargiacomo, A., and Nicolini, C., Langmuir, 2005, vol. 21, p. 172.

    Article  CAS  Google Scholar 

  44. Ozturk, O., Black, T.J., Perrine, K., Pizzolato, K., Parsons, F.W., Ratliff, J.S., et al., Langmuir, 2005, vol. 21, p. 998.

    Google Scholar 

  45. Singh, A. and Chandler, B.D., Langmuir, 2005, vol. 21, p. 10776.

    Article  CAS  Google Scholar 

  46. Torrens, F. and Castellano, G., J. Nanomater., 2006, article ID 17 052.

  47. Srinivasan, S.S., Wade, J., and Stefanakos, E.K., J. Nanomater., 2006, article ID 45 712.

  48. Zhong, K., Jin, P., and Chen, Q., J. Nanomater., 2006, article ID 37 375. doi 10.1155/JNM/2006/37375.

  49. Sesha S. Srinivasan, Jeremy Wade, and Elias K. Stefanakos, J. Nanomater., 2006, article ID 87 326. doi 10.1155/JNM/2006/87326.

  50. Foll, H., Carstensen, J., and Frey, S., J. Nanomater., 2006, article ID 91 635. doi 10.1155/JNM/2006/91635.

  51. Yi Yang, Xin-Jie Yu, Ya-Xue Wang, and Jun Wang, J. Nanomater., 2012, article ID 326584.

  52. Liu, X., Lee, C., Zhou, C., and Han, J., Appl. Phys. Lett., 2001, vol. 79, p. 3329.

    Article  CAS  Google Scholar 

  53. Shim, M., Javey, A., Kam, N.W.S., and Dai, H., J. Am. Chem. Soc., 2001, vol. 123, p. 11 512.

    CAS  Google Scholar 

  54. Dai, H., Acc. Chem. Res., 2002, vol. 35, p. 1035.

    Article  CAS  Google Scholar 

  55. Abes, J.I., Cohen, R.E., and Ross, A., Chem. Mater., 2003, vol. 15, p. 1125.

    Article  CAS  Google Scholar 

  56. Vasques, C.T., Domenech, S.C., Barreto, P.L.M., and Soldi, V., e-Polymers, 2010, no. 026.

  57. Hirmizia, M.Abu., Bakara, W.L., Tana, N.H.H., Bakara, A., Ismaila, J., and Seeb, C.H., J. Nanomater., 2012, article ID 352937.

  58. He, B., Suna, W., Wang, M., Liu, S., and Shen, Z., Mater. Chem. Phys., 2004, vol. 84, p. 140.

    Article  CAS  Google Scholar 

  59. Jafari Nejad, Sh., e-Polymers, 2012, no. 025.

  60. Najeh, I., Dahman, H., Mansour, N.B., and Mir, L.E., J. Nanomater., 2012, article ID 342561.

  61. Olejnik, R., Slobodian, P., Riha, P., and Saha, P., J. Nanomater., 2012, article ID 365062.

  62. Ismail Ab Rahmana and Vejayakumaran Padavettanb, J. Nanomater., 2012, article ID 132424.

  63. Renhua Zheng, Huajiang Jiang, Haichang Guo, and Weilin Sun, e-Polymers, 2011, no. 086.

  64. Casalboni, M., Dominici, L., Foglietti, V., Michelotti, F., Orsini, E., Palazzesi, C., Stella, F., and Prosposito, P., J. Nanomater., 2012, article ID 186429.

  65. Savva, I., Krekos, G., Taculescu, A., Marinica, O., Vekas, L., and Krasia-Christoforou, T., J. Nanomater., 2012, article ID 578026.

  66. Xie Minqiang, Xu Yiming, Liu Jie, Zhang Tao, Zhang Hongzheng, J. Nanomater., 2012, article ID 921034.

  67. Sargsyan, A.G., Tonoyan, A.O., Davtyan, S.P., and Schick, C., Eur. Polym. J., 2007, no. 8, p. 3113.

  68. Sargsyan, A.G., Tonoyan, A.O., Davtyan, S.P., and Schick, C., 9th Eur. Symp. in Thermal Analysis and Calorimetry, Krakow, 2006, p. 37.

  69. Sargsyan, A.G., Tonoyan, A.O., Davtyan, S.P., and Schick, C., NATAS Notes, 2007, vol. 39, no. 4, p. 6.

    CAS  Google Scholar 

  70. Davtyan, S.P. and Tonoyan, A.O., Osnovy nanotekhnologii. Nanochastitsy i polimernye nanokompozity (Principles of Nanotechnology: Nanoparticles and Polymer-Matrix Composites), Yerevan: Nauka RA, 2011.

    Google Scholar 

  71. Bednorz, J.G. and Muller, K.A., Z. Phys., 1986, vol. 64, no. 2, p. 189.

    Article  CAS  Google Scholar 

  72. Bednorz, J.G. and Muller, K.A., Rev. Mod. Phys., 1988, vol. 60, p. 585.

    Article  CAS  Google Scholar 

  73. Sharma, R.F., Reddy, Y.S., and Pzamana, S., Phys., 1988, vol. 30, p. 181.

    Google Scholar 

  74. Weaver, J.H., Meyer, H.M. III., Wagener, T.J., Hill, D.M., Gao, Y., Peterson, D., Fisk, Z., and Arko, A.J., Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 38, p. 4668.

    Article  CAS  Google Scholar 

  75. Meyer, H.M. and Hill, D.M., Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 38, p. 6500.

    Article  CAS  Google Scholar 

  76. Meyer, H.M., Hill, D.M., Wagener, T.J., Weaver, J.H., Gallo, C.F., and Goretta, K.C., J. Appl. Phys., 1989, vol. 65, p. 3130.

    Article  CAS  Google Scholar 

  77. Romana, L.T. and Wilshaw, P.R., Supercond. Sci. Technol., 1989, vol. 6, p. 285.

    Article  Google Scholar 

  78. Lindbery, P.A. and Shen, Z., Phys. Rev. B: Condens. Matter Mater. Phys., 1989, vol. 39, p. 2890.

    Article  Google Scholar 

  79. Hikata, T. and Sato, K.J., J. Appl. Phys., 1989, vol. 28, no. 1, p. 182.

    Google Scholar 

  80. Gagafarov, S.F. and Dzhafarov, T.D., Zh. Tekh. Fiz., 1990, vol. 16, no. 9, p. 59.

    Google Scholar 

  81. Asoka, P.S. and Mahumini, K., J. Appl. Phys., 1990, vol. 67, no. 6, p. 3184.

    Article  Google Scholar 

  82. Dotsenko, V.I., Braude, V.I., Ivaechenko, L.G., and Kislyak, I.F., Fiz. Nizk. Temp., 1996, vol. 22, no. 10, p. 222.

    Google Scholar 

  83. Frase, K.G., Liniger, E.G., and Clarke, D.R., Adv. Ceram. Mater., 1987, vol. 2, no. 3B, p. 698.

    CAS  Google Scholar 

  84. Goto, T. and Kada, M., J. Appl. Phys., 1987, vol. 26, no. 9, p. 1524.

    Google Scholar 

  85. Golyamina, E.M. and Lykov, A.N., Sverkhprovodimost: Fiz., Khim., Tekh., 1989, vol. 2, no. 6, p. 51.

    CAS  Google Scholar 

  86. Gummins, T.R., Egdell, R.G., and Georgiadis, G.C., J. Less-Common Met., 1990, vols. 164–165, p. 1149.

    Article  Google Scholar 

  87. Pulyaeva, I.V., Puzanova, A.A., Eksperindova, L.P., Nekrasova, L.N., et al., Sverkhprovodimost: Fiz., Khim., Tekh., 1993, vol. 6, p. 1430.

    CAS  Google Scholar 

  88. Pulyaeva, I.V., Eksperindova, L.P., Kovtun, E.D., Mateichenko, V.P., et al., Inorg. Mater., 1996, vol. 32, p. 788.

    CAS  Google Scholar 

  89. Haupt, S.G., Riley, D.R., Jones, C.T., Zhao, J., and McDevitt, J.T., J. Am. Chem. Soc., 1993, vol. 115, p. 1196.

    Article  CAS  Google Scholar 

  90. Haupt, S.G., Riley, D.R., Zhao, J., and McDevitt, J.T., J. Phys. Chem., 1993, vol. 97, p. 7796.

    Article  CAS  Google Scholar 

  91. Torosyan, A.A, Nersesyan, N.D., Peresada, A.G., Davtyan, S.P., Borovinskaya, I.P., and Merzhanov, A.G., USSR Inventor’s Certificate no. 4 737 132, 1989.

  92. Torosyan, A.A., Nersesyan, M.D., Peresada, A.G., Davtyan, S.P., Borovinskaya, I.P., and Merzhanov, A.G., USSR Inventor’s Certificate no. 4 749 647, 1989.

  93. Gyulumyan, X.N. and Davtyan, S.P., USSR Inventor’s Certificate no. 1 831 197, 1990.

  94. Arakelova, E.R., Bagdasaryan, A.E., Mirzoyan, G.N., Tonoyan, A.O., and Davtyan, S.P., Khim. Zh. Arm., 1997, vol. 50, nos. 1–2, p. 24.

    CAS  Google Scholar 

  95. Davtyan, S.P., Airapetyan, S.M., and Tonoyan, A.O., Preparation and Properties of High-T c Polymer-Ceramic Nanocomposites, in Konversionnyi potentsial Armenii i programmy MNTTs (Conversion Potential of Armenia and ISTC Programs), Yerevan, 2000, p. 253.

  96. Tonoyan, A.O. and Davtyan, S.P., High-T c Polymer-Ceramic Nanocomposites: Frontal Polymerization of Crystalline Monomers with the Aim of Producing Bulk and Particle-Filled Polymer Materials, in Konversionnyi potentsial Armenii i programmy MNTTs (Conversion Potential of Armenia and ISTC Programs), Yerevan, 2000, p. 162.

  97. Davtyan, S.P., Hayrapetyan, S.M., and Tonoyan, A.O., High Temperature SC Polymer-Ceramic Composites and Their Morphological Peculiarities, in Chemistry in Armenia on the Threshold of the XXI Century, Yerevan, 2000, p. 41.

  98. Hayrapetyan, S.M., Tonoyan, A.O., Arakelova, E.A., and Davtyan, S.P., Producing High Temperature SC Polymer-Ceramic Composites and Their Properties in Chemistry in Armenia on the Threshold of the XXI Century, Yerevan, 2000, p. 56.

  99. Davtyan, S.P., Hayrapetyan, S.M., Tonoyan, A.O., Hasratyan, A.K., Israelyan, V.R., and Hovnanyan, K.O., Int. Symp. High Temperature SC Polymer-Ceramic Composites and Their Morphological Peculiarities, Brno, 2000, p. 125.

  100. Tonoyan, A.O., Davtyan, S.P., Martirosyan, S.A., and Mamalis, A.G., J. Mater. Process. Technol., 2001, vol. 108, p. 201.

    Article  CAS  Google Scholar 

  101. Airapetyan, S.M., Tonoyan, A.O, Arakelova, E.R., and Davtyan, S.P., Vysokomol. Soedin., Ser. A, 2001, vol. 43, no. 10, p. 1814.

    CAS  Google Scholar 

  102. Tonoyan, A.O., Arakelova, E.R., Airapetyan, S.M., Mamalis, A.G., and Davtyan, S.P., Arm. Khim. Zh., 2001, vol. 54, nos. 1–2, p. 65.

    CAS  Google Scholar 

  103. Airapetyan, S.M., Tonoyan, A.O., Arakelova, E.R., Saakyan, A.A., and Davtyan, S.P., Arm. Khim. Zh., 2001, vol. 52, nos. 3–4, p. 45.

    Google Scholar 

  104. Tonoyan, A.O., Airapetyan, S.M., and Davtyan, S.P., Arm. Khim. Zh., 2001, vol. 52, nos. 3–4, p. 76.

    Google Scholar 

  105. Tonoyan, A.O., Davtyan, S.P., Airapetyan, S.M., Arakelova, E.R., and Saakyan, A.A., Arm Patent NP20000017, 2001.

  106. Ayrapetyan, S.M., Tonoyan, A.O., Kirakosyan, N.N., Chachatryan, A.R., and Davtyan, S.P., About Possibility of Intercalation during Formation of Superconducting Polymer-Ceramic Compositions, Enicolopov’s Readings: Within the Framework of Int. Sci. Conf. of SEUA, Yerevan, 2003, p. 19.

  107. Davtyan, S.P., Tonoyan, A.O., Hayrapetyan, S.M., and Manukyan, L.S., J. Mater. Process. Technol., 2005, vol. 160, no. 3, p. 306.

    Article  CAS  Google Scholar 

  108. Davtyan, S.P., Tonoyan, A.O., and Schick, C., Compos. Interfaces, 2006, vol. 13, nos. 4–6, p. 535.

    Article  CAS  Google Scholar 

  109. Davtyan, S.P. and Tonoyan, A.O., in Chemistry of Advanced Compounds and Materials, Lekishvili N. and Zaikov G.E., Eds., Nova Science, 2008, p. 3.

  110. Davtyan, S.P., Tonoyan, A.O., Schick, C., and Sargcyan, A.G., J. Mater. Process. Technol., 2007, vol. 163, no. 5, p. 734.

    Google Scholar 

  111. Davtyan, S.P. and Tonoyan, A.O., Vysokotemperaturnye sverkhprovodniki. Sverkhprovodyashchie polimer-keramicheskie nanokompozity (High-T c Superconductors and Superconducting Polymer-Ceramic Nanocomposites), Yerevan: Limush, 2008.

    Google Scholar 

  112. Davtyan, S.P., Tonoyan, A.O., and Schick, C., Materials, 2009, vol. 2, p. 2154.

    Article  CAS  Google Scholar 

  113. Davtyan, S.P., Berlin, A.A., and Tonoyan, A.O., Obz. Zh. Khim., 2011, vol. 1, no. 1, p. 58.

    Google Scholar 

  114. Privalko, V.P. and Titov, G.V., Vysokomol. Soedin., Ser. A, 1978, vol. 21, p. 380.

    Google Scholar 

  115. Liu, X. and Wu, Q., Polymer, 2001, vol. 42, p. 10 013.

    CAS  Google Scholar 

  116. Huang, X. and Brittain, W.J., Macromolecules, 2001, vol. 34, no. 10, p. 3255.

    Article  CAS  Google Scholar 

  117. Lipatov, Ya.S. and Privalko, V.P., Vysokomol. Soedin., Ser. B, 1972, vol. 14, no. 7, p. 1843.

    Google Scholar 

  118. Kalogeras, I.M. and Neagu, N.R., Eur. Phys. J. E, 2004, vol. 14, p. 193.

    Article  CAS  Google Scholar 

  119. Bershtein, V.A., Egorova, L.M., Yakushev, P.N., Pissis, P., Sysel, P., and Brozova, L., J. Polym. Sci., Part B: Polym. Phys., 2002, vol. 40, p. 1056.

    Article  CAS  Google Scholar 

  120. Tabtiang, A., Lumlong. S., and Venables, R.A., Eur. Polym. J., 2000, vol. 36, p. 2559.

    Article  CAS  Google Scholar 

  121. Arrighi, V., McEwena. I.J., Qiana, H., Serrano Prieto, M.B., Polymer, 2003, vol. 44, p. 6259.

    Article  CAS  Google Scholar 

  122. Ash, B.J., Schadler, L.S., and Siegel, R.W., Mater. Lett., 2002, vol. 55, p. 83.

    Article  CAS  Google Scholar 

  123. Ash, B.J., Siegel, R.W., and Schadler, L.R., J. Polym. Sci., Part B: Polym. Phys., 2004, vol. 42, p. 4371.

    Article  CAS  Google Scholar 

  124. Miwa, Y., Drews, A.R., and Schlick, S., Macromolecules, 2006, vol. 39, p. 3304.

    Article  CAS  Google Scholar 

  125. Mijovic, J., Lee, H.K., Kenny, J., and Mays, J., Macromolecules, 2006, vol. 39, p. 2172.

    Article  CAS  Google Scholar 

  126. Giannelis, E.P., Krishnamoorti, R., and Manias, E., Adv. Polym. Sci., 1999, vol. 138, p. 107.

    Article  CAS  Google Scholar 

  127. Lee, D.C. and Jang, L.W., J. Appl. Polym. Sci., 1996, vol. 61, p. 1117.

    Article  CAS  Google Scholar 

  128. Privalko, V.P., Lipatov, Ya.S., and Kercha, Ya.Ya., Vysokomol. Soedin., Ser. A, 1970, vol. 12, no. 6, p. 1520.

    Google Scholar 

  129. Mammeri, F., Rozes, L., Le Bourhis, E., and Sanchez, C., J. Eur. Ceram. Soc., 2006, vol. 26, p. 267.

    Article  CAS  Google Scholar 

  130. Vieweg, S., Unger, R., Hempel, E., and Donth, E., J. Non-Cryst. Solids, 1998, vol. 235, p. 470.

    Article  Google Scholar 

  131. Kirst, K.U., Kremer, F., and Litvinov, V.M., Macromolecules, 1993, vol. 26, p. 975.

    Article  CAS  Google Scholar 

  132. Litvinov, V.M. and Spies, H.W., Makromol. Chem., 1991, vol. 192, p. 3005.

    Article  CAS  Google Scholar 

  133. Lin, W.Y. and Blum, F.D., Macromolecules, 1998, vol. 31, p. 4135.

    Article  CAS  Google Scholar 

  134. Yagrarov, M.S., Ionkin, V.S., and Gizatullina, Z.G., Vysokomol. Soedin.: Ser. A, 1969, vol. 11, no. 10, p. 2626.

    Google Scholar 

  135. Haraguchi, K. and Li, H.J., Macromolecules, 2006, vol. 39, p. 1898.

    Article  CAS  Google Scholar 

  136. Tsagaropoulos, G. and Eisenberg, A., Macromolecules, 1995, vol. 28, p. 6067.

    Article  CAS  Google Scholar 

  137. Tsagaropoulos, G. and Eisenberg, A., Macromolecules, 1995, vol. 28, p. 396.

    Article  CAS  Google Scholar 

  138. Fragiadakis, D., Pissis, P., and Bokobza, L., Polymer, 2005, vol. 46, p. 6001.

    Article  CAS  Google Scholar 

  139. Salaniwal, S., Kumar, S.K., and Douglas, J.F., Phys. Rev. Lett., 2002, vol. 8, no. 25, p. 258 301.

    Google Scholar 

  140. Donth, E., Glass Transition, Berlin: Springer, 2001.

    Google Scholar 

  141. Schick, C., Sukhorukov, D., and Schonhals, A., Macromol. Chem. Phys., 2001, vol. 202, no. 8, p. 1398.

    Article  CAS  Google Scholar 

  142. Huth, H., Wang, L.M., Schick, C., and Richert, R., J. Chem. Phys., 2007, vol. 126, p. 104 503.

    Article  CAS  Google Scholar 

  143. Schick, C., Dobbertin, J., Potter, M., Dehne, H., Hensel, A., Wurm, A., et al., J. Therm. Anal., 1997, vol. 49, no. 1, p. 499.

    Article  CAS  Google Scholar 

  144. Dobbertin, J., Hensel, A., and Schick, C., J. Therm. Anal., 1996, vol. 47, no. 4, p. 1027.

    Article  CAS  Google Scholar 

  145. Xia, H. and Song, M., Thermochim. Acta, 2005, vol. 429, p. 1.

    Article  CAS  Google Scholar 

  146. Klonos, P., Panagopoulou, A., Bokobza, L., Kyritsis, A., Peoglos, V., and Pissis, P., Polymer, 2010, vol. 51, p. 5490.

    Article  CAS  Google Scholar 

  147. Klonos, P., Panagopoulou, A., Kyritsis, A., Bokobza, L., and Pissis, P., J. Non-Cryst. Solids, 2011, vol. 357, p. 610.

    Article  CAS  Google Scholar 

  148. Suzuki, H., Grebowicz, J., and Wunderlich, B., Br. Polym. J., 1985, vol. 17, no. 1, p. 1.

    Article  CAS  Google Scholar 

  149. Wunderlich, B., Prog. Polym. Sci., 2003, vol. 28, no. 3, p. 383.

    Article  CAS  Google Scholar 

  150. Xu, H. and Cebe, P., Macromolecules, 2004, vol. 37, p. 2797.

    Article  CAS  Google Scholar 

  151. Minakov, A.A., Mordvintsev, D.A., Tol, R., and Schick, C., Thermochim. Acta, 2006, vol. 442, p. 25.

    Article  CAS  Google Scholar 

  152. Minakov, A.A., Mordvintsev, D.A., and Schick, C., Polymer, 2004, vol. 45, no. 11, p. 3755.

    Article  CAS  Google Scholar 

  153. Ishida, Y., Yamafuji, K., Ito, H., and Takayanagi, M., Kolloid Z. Z. Polym., 1962, vol. 184, no. 2, p. 97.

    Article  CAS  Google Scholar 

  154. Donth, E., J. Non-Cryst. Solids, 1982, vol. 53, p. 325.

    Article  CAS  Google Scholar 

  155. Schick, C. and Donth, E., Phys. Scr., 1991, vol. 43, no. 4, p. 423.

    Article  CAS  Google Scholar 

  156. Schubnell, M. and Schawe, J.E.K., Int. J. Pharm., 2001, vol. 217, nos. 1–2, p. 173.

    Article  CAS  Google Scholar 

  157. Wunderlich, B., Pure Appl. Chem., 1995, vol. 67, no. 6, p. 1019.

    Article  CAS  Google Scholar 

  158. Dejong, B.H.W.S., Slaats, P.G.G., Super, H.T.J., Veldman, N., and Spek, A.L., J. Non-Cryst. Solids, 1994, vol. 176, p. 164.

    Article  CAS  Google Scholar 

  159. Hodge, I.M., J. Non-Cryst. Solids, 1994, vol. 169, p. 211.

    Article  CAS  Google Scholar 

  160. Hay, J.N., Pure Appl. Chem., 1995, vol. 67, no. 11, p. 1855.

    Article  CAS  Google Scholar 

  161. Lu, H. and Nutt, S., Macromolecules, 2003, vol. 36, p. 4010.

    Article  CAS  Google Scholar 

  162. Lu, H. and Nutt, S., Macromol. Chem. Phys., 2003, vol. 204, p. 1832.

    Article  CAS  Google Scholar 

  163. Adam, G. and Gibbs, J.H., J. Chem. Phys., 1965, vol. 43, p. 139.

    Article  CAS  Google Scholar 

  164. Scheidler, P., Kob, W., and Binder, K., Europhys. Lett., 2002, vol. 59, no. 5, p. 701.

    Article  CAS  Google Scholar 

  165. Tonoyan, A.O., Bagdasaryan, A.E., Manukyan, L.S., Kirakosyan, N.N., and Davtyan, S.P., Izv. Nats. Aakd. Nauk Arm. Gos. Inzh. Univ. Arm., 2003, vol. 56, no. 2, p. 20.

    Google Scholar 

  166. Davtyan, S.P., Tonoyan, A.O., Manukyan, L.S., and Ayrapetyan, S.M., Eur. Polym. J., 2002, vol. 12, p. 2423.

    Article  Google Scholar 

  167. Davtyan, D.S., Bagdasaryan, A.E., Tonoyan, A.O., and Davtyan, S.P., Khim. Fiz., 2000, vol. 19, no. 9, p. 83.

    CAS  Google Scholar 

  168. Davtyan, D.S., Bagdasaryan, A.E., Tonoyan, A.O., and Davtyan, S.P., Khim. Fiz., 2000, vol. 19, no. 9, p. 100.

    CAS  Google Scholar 

  169. López, E., Márquez, A., Flores, S., Ibarra, R., Hernández, C., Yacamán, M., and Zaragoza, A., Proc. World Polymer Congr.-Macro 2006, 41st Int. Symp. on Macromolecules, Rio de Janeiro, 2006.

  170. Davtyan, S.P., Zhirkov, V.P., and Vol’fson, S.A., Usp. Khim., 1984, vol. 53, p. 251.

    Article  CAS  Google Scholar 

  171. Khanukaev, B.B., Kozhushner, M.A., and Enikolopyan, N.S., Fiz. Goreniya Vzryva, 1974, vol. 10, no. 1, p. 22.

    CAS  Google Scholar 

  172. Khanukaev, B.B., Kozhushner, M.A., and Enikolopyan, N.S., Fiz. Goreniya Vzryva, 1974, vol. 10, no. 5, p. 643.

    CAS  Google Scholar 

  173. Davtyan, S.P., Surkov, N.F., Davtyan, S.P., Rozenberg, B.A., and Enikolopyan, N.S., Dokl. Akad. Nauk, 1977, vol. 232, p. 64.

    Google Scholar 

  174. Chechilo, N.M. and Enikolopyan, N.S., Dokl. Akad. Nauk, 1975, vol. 221, p. 1140.

    CAS  Google Scholar 

  175. Chechilo, N.M. and Enikolopyan, N.S., Dokl. Akad. Nauk, 1976, vol. 230, p. 160.

    CAS  Google Scholar 

  176. Pojman, J.A., Willis, J., Fortenberry, D., Ilyashenko, V., and Khan, A.M., J. Polym. Sci., Part A: Polym. Chem., 1995, vol. 33, p. 643.

    Article  CAS  Google Scholar 

  177. Manukyan, L.S., Airapetyan, S.M., Tonoyan, A.O., and Davtyan, S.P., Izv. Nats. Akad. Nauk Arm. Gos. Inzh. Univ. Arm., 2003, vol. 56, no. 1, p. 52.

    Google Scholar 

  178. Yangchuan Ke, Chenfen Long, and Zongneng Qi, J. Appl. Polym. Sci., 1999, vol. 71, p. 1139.

    Article  CAS  Google Scholar 

  179. Kornmann, X., Lindberg, H., and Berglund, L.A., Polymer, 2001, vol. 42, p. 4493.

    Article  CAS  Google Scholar 

  180. Gopakumar, T.G., Lee, J.A., Kontopoulou, M., and Parent, J.S., Polymer, 2002, vol. 43, p. 5483.

    Article  CAS  Google Scholar 

  181. Joo Young Nam, Suprakas Sinha Ray, and Masami Okamoto, Macromolecules, 2003, vol. 36, p. 7126.

    Article  CAS  Google Scholar 

  182. Lincoln, D.M. and Vaia, R.A., Macromolecules, 2004, vol. 37, p. 4554.

    Article  CAS  Google Scholar 

  183. Amerio, E., Sangermano, M., Malucelli, G., Priola, A., and Voit, B., Polymer, 2005, vol. 46, p. 11 241.

    Article  CAS  Google Scholar 

  184. Román, F., Montserrat, S., and Hutchinson, J.M., J. Thermal Anal. Calorim., 2007, vol. 87, no. 1, p. 113.

    Article  CAS  Google Scholar 

  185. Rosso, P. and Lin Ye, Macromol. Rapid Commun., 2007, vol. 28, p. 121.

    Article  CAS  Google Scholar 

  186. Dae Su Kim, Jin-Tae Kim, and Won Bum Woo, J. Appl. Polym. Sci., 2005, vol. 96, p. 1641.

    Article  CAS  Google Scholar 

  187. Benson, R. and Cairos, T., J. Am. Chem. Soc., 1948, vol. 70, no. 5, p. 2115.

    Article  Google Scholar 

  188. Volkova, T.M., Kinetics of Activated Caprolactam Anion Polymerization, Cand. Sci. (Chem.) Dissertation, Moscow, 1982.

  189. Davtyan, S.P., Neizotermicheskie metody sinteza polimerov. Teoriya i praktika protsessov adiabaticheskoi polimerizatsii (Nonisothermal Polymer Synthesis Processes: Theory and Practice of Adiabatic Polymerization Processes), Yerevan: Asogik, 2004.

    Google Scholar 

  190. Begishev, V.P., Bolgov, S.A., Malkin, A.Ya., Subbotina, N.I., and Frolov, V.G., Vysokomol. Soedin., Ser. B, 1980, vol. 22, no. 2, p 124.

    CAS  Google Scholar 

  191. Davtyan, S.P., Schick, C., Tonoyan, A.O., and Zohrabyan, D., e-Polymers, 2011, no. 040.

  192. Litmanovich, A.A. and Papisov, I.M., Vysokomol. Soedin., Ser. B, 1997, vol. 39, p. 323.

    CAS  Google Scholar 

  193. Litmanovich, A.A., Bogdanov, A.G., and Papisov, I.M., Vysokomol. Soedin., Ser. B, 1997, vol. 43, p. 2023.

    Google Scholar 

  194. Litmanovich, O.E., Litmanovich, A.A., and Papisov, I.M., Vysokomol. Soedin., Ser. B, 2000, vol. 42, p. 670.

    CAS  Google Scholar 

  195. Litmanovich, A.A., Bogdanov, A.G., and Papisov, I.M., Vysokomol. Soedin., Ser. B, 2001, vol. 43, p. 135.

    CAS  Google Scholar 

  196. Litmanovich, O.E., Vysokomol. Soedin., Ser. A, 2008, vol. 50, p. 1370.

    CAS  Google Scholar 

  197. Litmanovich, O.E. and Litmanovich, A.A., Vysokomol. Soedin. Ser. A, 2007, vol. 4, p. 674.

    Google Scholar 

  198. Litmanovich, O.E., Litmanovich, A.A., and Papisov, I.M., Vysokomol. Soedin., Ser. A, 2007, vol. 49, p. 684.

    CAS  Google Scholar 

  199. Gole, A. and Murphy, C.J., Langmuir, 2005, vol. 21, p. 10 756.

    Article  CAS  Google Scholar 

  200. Rudin, A., Schreiber, H.P., and Waldman, M.H., Ind. Eng. Chem., 1961, vol. 53, p. 137.

    Article  CAS  Google Scholar 

  201. Torsueva, E.S. and Shlyapnikov, Yu.A., Vysokomol. Soedin., Ser. A, 1973, vol. 175, p. 637.

    Google Scholar 

  202. Afanasiadi, L.I., Blank, A.B., Rvichko, L.A., Rotok, L.A., Litvinenko, Yu.G., Moghilko, E.T., Nastova, Z.M., Pavlyik, V.A., Pirogov, A.S., Pulyayeva, I.V., and Sheshina, S.G., Bull. Mater. Sci., 1991, vol. 14, no. 2, p. 335.

    Article  CAS  Google Scholar 

  203. Rybkina, G.G., Ryabin, V.A., Moruni, M.S., Naberezhneva, E.L., and Vostretsova, A.B., Sverkhprovodimost: Fiz., Khim., Tekh., 1993, vol. 6, nos. 11–12, p. 2126.

    Google Scholar 

  204. Krasil’nikov, V.N., Aptsigina, V.V., and Bezuev, G.V., Sverkhprovodimost: Fiz., Khim., Tekh., 1993, vol. 7, no. 1, p. 135.

    Google Scholar 

  205. Enikolopyan, N.S. and Vol’fson, S.A., Khimiya i tekhnologiya poliformal’degida (Chemistry and Technology of Polyformaldehyde), Moscow: Khimiya, 1968.

    Google Scholar 

  206. Madorsky, S.L., Thermal Decomposition of Organic Polymers, New York: Wiley-Interscience, 1964.

    Google Scholar 

  207. Wfng Huagin, Zhang Shiyian, Jin Tongheng, and Han Shiyuan, Mod. Phys. Lett. B, 1987, vol. 1, no. 8, p. 289.

    Article  Google Scholar 

  208. Kuz’micheva, G.M. and Khlybov, E.P., Neorg. Mater., 1990, vol. 26, no. 6, p. 1264.

    Google Scholar 

  209. Goodentough, Y.B., Demazen, G., Pouchard, M., and Hagenmuller, P., J. Solid State Chem., 1973, vol. 8, p. 325.

    Article  Google Scholar 

  210. Ganduly, P. and Rao, C.N.R., Mater. Res. Bull., 1973, vol. 8, no. 4, p. 405.

    Article  Google Scholar 

  211. Rao, C.N.R., Parkash, O., and Ganguly, P., J. Solid State Chem., 1975, vol. 15, no. 2, p. 186.

    Article  CAS  Google Scholar 

  212. Mirzoyan, A.A., Garibyan, T.A., Gazaryan, K.G., and Arutyunyan, M.G., Sverkhprovodimost: Fiz., Khim., Tekh., 1991, vol. 4, no. 9, p. 986.

    Google Scholar 

  213. Ivanov, S.S. and Dmitrienko, A.B., Usp. Khim., 1982, vol. 51, no. 7, p. 1178.

    Google Scholar 

  214. Bruk, M.A., Pavlov, S.A., and Apkin, A.D., Radiat. Phys. Chem., 1981, vol. 17, no. 2, p. 113.

    CAS  Google Scholar 

  215. Farris, R.J., J. Appl. Polym. Sci., 1964, vol. 8, p. 25.

    Article  Google Scholar 

  216. Topolkaraev, V.A., Tovmasyan, Yu.M., Dubnikova, I.L., et al., Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 6, p. 1418.

    CAS  Google Scholar 

  217. Bartenev, G.M. and Zuev, Yu.S., Prochnost’ i razrushenie vysokoelastichnykh materialov (Strength and Fracture of Highly Elastic Materials), Moscow, 1964, p. 195.

  218. Rheology: Theory and Applications, Eirich, F.R., Ed., New York: Academic, 1956.

    Google Scholar 

  219. Yim, A. and Pierre, E.St., J. Polym. Sci., Part B: Polym. Phys. 1969, vol. 7, p. 237.

    CAS  Google Scholar 

  220. Braus, G. and Gruver, J.T., J. Polym. Sci., Part A: Polym Chem., 1970, vol. 2, p. 571.

    Google Scholar 

  221. Ball, G.L. and Salyer, I.O., J. Acoust. Soc. Am., 1966, vol. 39, p. 663.

    Article  CAS  Google Scholar 

  222. Boehme, R.D., J. Appl. Polym. Sci., 1968, vol. 12, p. 1097.

    Article  CAS  Google Scholar 

  223. Thurn, H., Kunststoffe, 1960, vol. 50, p. 606.

    CAS  Google Scholar 

  224. Romanyukha, A.A., Shvachko, Yu.N., and Ustinov, V.V., Usp. Fiz. Nauk, 1991, vol. 161, p. 37.

    Article  CAS  Google Scholar 

  225. Asaturyan, R.A., Mod. Phys. Lett. B, 1993, vol. 7, p. 2043.

    Google Scholar 

  226. Asaturyan, R.A., Sarkisyan, D.A., Ignatyan, E.H., and Begoian, K.G., Solid State Commun., 1995, vol. 95, p. 389.

    Article  Google Scholar 

  227. Nicolais, L. and Narkis, M., Polym. Eng. Sci., 1971, vol. 11, p. 194.

    Article  CAS  Google Scholar 

  228. Clarne, R. and Uher, C., Adv. Phys., 1984, vol. 33, p. 469.

    Article  Google Scholar 

  229. Beille, J., Cabanel, R., Chaillaut, C., Chevaler, B., et al., Acad. Sci., Ser, 1987, vol. 304, p. 1094.

    Google Scholar 

  230. Bukovski, Z., Horin, R., and Rogacki, K., J. Less-Common Met., 1988, vol. 144, p. 153.

    Article  Google Scholar 

  231. Enz, C.P., Helv. Phys. Acta, 1988, vol. 61, p. 741.

    Google Scholar 

  232. Rao, C.N.R., Phys. C (Amsterdam, Neth.), 1988, vols. 153–155, p. 1762.

    Article  Google Scholar 

  233. Balzarotti, A., DeCrescenzi, M., Motta, N., Patella, F., and Scarlata, A., Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 38, p. 6461.

    Article  CAS  Google Scholar 

  234. Jorgesen, J.D., Veal, B.W., Paulikas, A.P., Nowicki, L.J., et al., L, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, vol. 41, p. 1863.

    Article  Google Scholar 

  235. Goyot, H., Surf. Sci., 1992, nos. 269–270, p. 1082.

  236. Chemistry of Oxide Superconductors, Rao, C.N.R., Ed., Oxford: Blackwell Scientific, 1988.

    Google Scholar 

  237. Baikov, Yu.M., Shalkova, E.K., and Ushakova, T.A., Sverkhprovodimost: Fiz., Khim., Tekh., 1993, vol. 6, p. 449.

    CAS  Google Scholar 

  238. Shapligin, I.S., Kakhap, B.G., and Lazarev, V.B., J. Inorg. Chem., 1979, vol. 24, p. 1478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Davtyan.

Additional information

Original Russian Text © S.P. Davtyan, A.S. Avetisyan, A.A. Berlin, A.O. Tonoyan, 2013, published in Obzornyi Zhurnal po Khimii, 2013, Vol. 3, No. 1, pp. 3–57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davtyan, S.P., Avetisyan, A.S., Berlin, A.A. et al. Synthesis and properties of particle-filled and intercalated polymer nanocomposites. Ref. J. Chem. 3, 1–51 (2013). https://doi.org/10.1134/S2079978013010019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978013010019

Keywords

Navigation