Skip to main content
Log in

Effect of Light on the Antifungal Activity of Submicron Particles Based on Tungsten Oxide

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The antifungal activity of fine submicron-size particles of WO3 and RbTe1.5W0.5O6 against the spores and vegetative mycelium of Aspergillus niger and Penicillium chrysogenum fungi is studied. It is found that the studied compounds WO3 and RbTe1.5W0.5O6 caused a decrease in the survival rate of microorganisms in the dark. Antifungal activity increased against both the spores and vegetative mycelium of fungi under light exposure with a power of 30 and 50 W with a radiation-flux density of 325.5 and 524 W/m2, respectively, which indicates their photocatalytic activity. It is noted that the antifungal activity of RbTe1.5W0.5O6 both under light and dark conditions on the spores and vegetative mycelium of fungi is higher compared to WO3. The antifungal effect of the compounds under study increased with an increase in the duration of exposure and the intensity of illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. V. D. Ilyichev, B. V. Bocharov, and M. V. Gorlenko, Ecological Bases of Protection Against Biological Damage (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  2. B. N. Ogarkov, Mycota—the Basis of Many Biotechnologies (Irkutsk, 2011) [in Russian].

  3. A. A. Meleshko, A. G. Afinogenova, G. E. Afinogenov, et al., Infekts. Immunitet 10, 639 (2020).

    Article  Google Scholar 

  4. O. V. Zakharova and A. A. Guseva, “Photocatalytically active zinc oxide and titanium dioxide nanoparticles in clonal micropropagation of plants: Prospects,” Nanotechnol. Russ. 14, 311 (2019).

    Article  CAS  Google Scholar 

  5. A. Lipovsky, Y. Nitzan, A. Gedanken, et al., Nanotechnology 22, 105101 (2011). https://doi.org/10.1088/0957-4484/22/10/105101

    Article  CAS  Google Scholar 

  6. L. He, Y. Liu, A. L. Mustapha, et al., Microbiol. Res. 166, 207 (2011). https://doi.org/10.1016/j.micres.2010.03.003

    Article  CAS  Google Scholar 

  7. S. Thabet, F. Simonet, M. Lemaire, et al., Appl. Environ. Microbiol. 80, 7527 (2014). https://doi.org/10.1128/AEM.02416-14

    Article  CAS  Google Scholar 

  8. D. Mitoray, A. Janczyk, M. Strus, et al., Photochem. Photobiol. Sci. 6, 642 (2007).

    Article  Google Scholar 

  9. O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001). https://doi.org/10.1016/S1466-6049(01)00197-0

    Article  CAS  Google Scholar 

  10. L. K. Adams, D. J. Lyon, and P. J. Alvarez, Water Res. 40 (10), 27 (2006). https://doi.org/10.1016/j.waters.2006.08.004

    Article  Google Scholar 

  11. B. Zhang, Q. Li, D. Wang, et al., Nanomaterials 10, 2096 (2020). https://doi.org/10.3390/nano10112096

    Article  CAS  Google Scholar 

  12. J. Liu, Y. Wang, J. Ma, et al., J. Alloys Compd. 783, 898 (2019). https://doi.org/10.1016/j/j.jallcom.2018.12.330

    Article  CAS  Google Scholar 

  13. H. Pan, H. Xiie, G. Chen, et al., Int. J. Biol. Macromol. 148, 608 (2020).

    Article  CAS  Google Scholar 

  14. J. Prakash, Sh. Sun, H. Swart, et al., Appl. Mater. Today 11, 82 (2018). https://doi.org/10.1016/j/j.apmt.2018.02.002

    Article  Google Scholar 

  15. A. Yu. Shishkin, V. F. Smirnov, O. N. Smirnova, D. G. Fukina, A. V. Koryagin, E. V. Suleimanov, and E. O. Zelenova, in Proceedings of the Conference 3rd Russian Microbiological Congress (Pskov State Univ., Pskov, 2021), p. 286. https://lib.pskgu.ru/page/d1f45f6d-f629-4fa1-94fd-6449031c1269

    Google Scholar 

  16. D. G. Fukina, A. V. Koryagin, A. V. Koroleva, et al., J. Solid State Chem. 300, 122235 (2021). https://doi.org/10.1016/j.jssc.2021.122235

    Article  CAS  Google Scholar 

  17. D. G. Fukina, E. V. Suleimanov, G. K. Fukin, et al., J. Solid State Chem. 286, 121276 (2020).

    Article  Google Scholar 

  18. D. G. Fukina, E. V. Suleimanov, A. V. Boryakov, et al., J. Solid State Chem. 293, 121 (2020). https://doi.org/10.1016/j.jssc.2020.121787

    Article  CAS  Google Scholar 

  19. V. I. Sukharevich, I. L. Kuzikova, N. G. Medvedeva, Protection against Biological Damage Caused by Fungi (ELBI-SPb, St. Petersburg, 2009) [in Russian].

  20. S. C. de la Rosa-Garcia, P. Martinez-Torres, S. Gomaz-Cornellio, et al., J. Nanomater. 2018, 3498527 (2018). https://doi.org/10.1155/2018/3498527

    Article  CAS  Google Scholar 

  21. K. P. Yu, Y. T. Huang, and S. C. Yang, J. Hazard. Mater. 261, 155 (2013).

    Article  CAS  Google Scholar 

  22. A. A. Asanova, V. I. Polonskiy, N. S. Manukovsky, and S. V. Khizhnyak, “Fungistatic activity of engineered nanoparticles,” Nanotechnol. Russ. 13, 277–280 (2018).

    Article  CAS  Google Scholar 

  23. Z. Xia, Q. Ma, S. Li, et al., J. Microbiol., Immunol. Infect. 49, 182 (2016). https://doi.org/10.1016/j.jmii.2014.04.013

    Article  CAS  Google Scholar 

  24. J. Kim, J. Lee, S. Kwon, and S. Jeong, J. Nanosci. Nanotechnol. 9, 1098 (2009). https://doi.org/10.1166/jnn.2009.c096

    Article  CAS  Google Scholar 

  25. R. Meraat, A. A. Ziabari, Kh. Issazadeh, et al., Acta Metall. Sin.-Engl. Lett. 29, 601 (2016). https://doi.org/10.1007/s40195-016-0439-5

    Article  CAS  Google Scholar 

  26. C. Sichel, M. de Cara, J. Tello, et al., Appl. Surf. Sci. 74, 152 (2007). https://doi.org/10.1016/j.apcatb.2007.02.005

    Article  CAS  Google Scholar 

  27. S. Y. Ye, M. L. Fan, X. L. Song, et al., Int. J. Food Microbiol. 136, 332 (2010). https://doi.org/10.1016/j.ijfoodmicro.2009.09.028

    Article  CAS  Google Scholar 

  28. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009). https://doi.org/10.1039/B800489G

    Article  CAS  Google Scholar 

  29. Y. Nosaka and A. Y. Nosaka, Photocatalysis and Water Purification, Ed. by P. Pichat (Wiley-VCH, Weinheim, 2013). https://doi.org/10.1002/9783527645404

  30. M. A. Butler, J. Appl. Phys. 48, 1914 (1977).

    Article  CAS  Google Scholar 

  31. J. C. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, and J. L. Guzmán-Mar, Adv. Chem. Eng. 5, 1000070 (2021).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of Common Use Centre “New Materials and Resource-saving Technologies” of the Research Institute for Chemistry of Lobachevsky State University of Nizhny Novgorod (Russia).

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation (the basic part of the State assignment, project no. 0729-2020-0053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Smirnov.

Ethics declarations

We declare that we have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of us.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.F., Smirnova, O.N., Shishkin, A.Y. et al. Effect of Light on the Antifungal Activity of Submicron Particles Based on Tungsten Oxide. Nanotechnol Russia 17, 444–456 (2022). https://doi.org/10.1134/S263516762203017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762203017X

Navigation