Skip to main content
Log in

An Analysis of Phase Relationships between Oscillatory Processes in the Human Cardiovascular System

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The phase relationships between heart rate variability, respiration, forearm skin blood flow oscillations (according to laser Doppler flowmetry), and finger-pad tissue blood volume oscillations (according to photoplethysmography) were analyzed in relatively healthy volunteers at rest. The degree of synchronization between phases of analyzed signals was estimated based on the value of the phase wavelet coherence function. A significant phase synchronization was detected between forearm skin blood flow oscillations and finger-pad tissue blood volume oscillations in the low frequency region (0.0095–0.1 Hz) and at the frequency of heart rate of ~ 1 Hz. At a respiration rate of ~0.3 Hz, differences were detected in the phase synchronization of peripheral hemodynamic oscillations (blood volume and blood flow) with both heart rate variability and respiration. For finger-pad tissue blood volume oscillations, a high phase synchronization with both heart rate variability and respiratory rate was observed; for forearm blood flow oscillations, low phase synchronization occurred in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. A. Bockeria, O. L. Bockeria, and I. V. Volkovskaya, Ann. Aritmol., No. 4, 21 (2009).

  2. Functional Diagnosis of Microcirculatory Tissue Systems: Oscillations, Information, Nonlinearity, Ed. by A. I. Ktupatkin and V. V. Sidorov (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

  3. J. Allen, Physiol. Meas. 28, R1 (2007).

    Article  ADS  Google Scholar 

  4. C. Schafer, M. G. Rosenblum, J. Kurths, and H.-H. Abel, Nature 392, 239 (1998).

    Article  ADS  Google Scholar 

  5. C. Schafer, M. G. Rosenblum, H.-H. Abel, and J. Kurths, J. Phys. Rev. E 60, 857 (1999).

    Article  ADS  Google Scholar 

  6. A. Bracic-Lotric and A. Stefanovska, Physica A 283, 451 (2000).

    Article  ADS  Google Scholar 

  7. N. B. Janson, A. G. Balanov, V. S. Anishchenko, and P. V. E. McClintock, Phys. Rev. Lett. 86, 1749 (2001).

    Article  ADS  Google Scholar 

  8. S. Rzeczinski, N. B. Janson, A. G. Balanov, and P. V. E. McClintock, Phys. Rev. E 66, 051909 (2002).

    Article  ADS  Google Scholar 

  9. R. Bartsch, J. W. Kantelhardt, T. Penzel, and S. Havlin, Phys. Rev. Lett. 98, 054102 (2007).

    Article  ADS  Google Scholar 

  10. A. Bandrivskyy, A. Bernjak, P. McClintock, and A. Stefanovska, Cardiovasc. Eng. 4, 89 (2004).

    Article  Google Scholar 

  11. A. V. Tankanag, A. A. Grinevich, T. V. Kirilina, et al., Microvasc. Res. 95, 53 (2014).

    Article  Google Scholar 

  12. A. V. Tankanag, A. A. Grinevich, I. V. Tikhonova, et al., Biophysics (Moscow) 62 (4), 629 (2017).

    Article  Google Scholar 

  13. A. Stefanovska, M. Bracic, and H. D. Kvernmo, IEEE Trans. Biomed. Eng. 46, 1230 (1999).

    Article  Google Scholar 

  14. A. A. Sagaidachnyi, A. V. Skripal, A.V. Fomin, and D. A. Usanov, Physiol Meas. 35 (2), 153 (2014).

    Article  Google Scholar 

  15. I. Mizeva, C. Di Maria, P. Frick, et al., J. Biomed. Optics 20 (3), 037007 (2015).

    Article  ADS  Google Scholar 

  16. L. M. Rodrigues, C. Rocha, H. Ferreira, and H. Silva, Sci. Rep. 9, 16951 (2019).

    Article  ADS  Google Scholar 

  17. L. M. Nilsson, Anesth. Analg. 117 (4), 859 (2013).

    Article  Google Scholar 

  18. T. Miyawaki, J. Minson, L. Arnolda, et al., Am. J. Physiol. 271 (5, Pt. 2), R1221 (1996).

    Article  Google Scholar 

  19. D. B. Zoccal, A. E. Simms, L. G. H. Bonagamba, et al., J. Physiol. 586 (13), 3253 (2008).

    Article  Google Scholar 

  20. J. H. Costa-Silva, D. B. Zoccal, and B. H. Machado, J. Neurophysiol. 103 (4), 2095 (2010).

    Article  Google Scholar 

  21. M. E. Muck-Weymann, H. P. Albrecht, D. Hager, et al., Microvasc. Res. 52, 69 (1996).

    Article  Google Scholar 

  22. M. Nitzan, I. Faib, and H. Friedman, J. Biomed. Optics 11 (4), 040506 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research (grant no. 18-015-00292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tankanag.

Ethics declarations

Conflict of interests . The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the 2002 Helsinki Declaration of the World Medical Association. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tankanag, A.V., Grinevich, A.A., Tikhonova, I.V. et al. An Analysis of Phase Relationships between Oscillatory Processes in the Human Cardiovascular System. BIOPHYSICS 65, 159–164 (2020). https://doi.org/10.1134/S0006350920010194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920010194

Navigation