Skip to main content
Log in

Effect of High Reynolds Number on the Behaviour of Large and Very Large Scale Motions in Fully Developed Turbulent Pipe Flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The experimental investigation of fully-developed turbulent pipe flow is performed to study contribution of the coherent structures to the kinetic energy over a special range of high Reynolds numbers. The experiment is carried out in the pipe test facility located at Brandenburg University of Technology, Germany. One-dimensional spectral analysis is used to assess the structure behaviour in the outer region of pipe flow. The results of power and pre-multiplied spectrum of streamwise velocity indicate that the wavelength of very large scale motions (VLSMs) acquires 19R, where R is the pipe radius, at the maximum Reynolds number range ReD = ubD/ν = 1 × 106, where ub is the bulk velocity, D is the pipe diameter, and ν is the kinematic viscosity. At the same time, the large-scale motions (LSMs) have the extreme wavelength equal to 3R over various Reynolds number ranges. According to the identified wavelength values, it is observed that contribution of the energy to the structures greater than 3R carries 55% of the total kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Jiménez, J., The largest scales of turbulent wall flows, Center for Turbulence Research, Annual Research Briefs, 1998, pp. 137–154.

  2. Kim, K.C. and Adrian, R.J., Very large-scale motion in the outer layer, Phys. Fluids, 1999, vol. 11, pp. 417–22.

    Article  ADS  MathSciNet  Google Scholar 

  3. Theodorsen, T., Mechanism of turbulence, In Proc. 2nd Midwest. Conf. Fluid Mech., Mar. 17–19, 1952, pp. 1–19. Columbus: Ohio State Univ., 1952

  4. Robinson, S.K., Coherent motions in turbulent boundary layers, Annu. Rev. Fluid Mech., 1991, vol. 23, pp. 601–639.

    Article  ADS  Google Scholar 

  5. Jiménez, J. and Moin, P., The minimal flow unit in near-wall turbulence, J. Fluid Mech., 1991, vol. 225, pp. 213–240.

    Article  ADS  Google Scholar 

  6. Adrian, R.J., Meinhart, C.D., and Tomkins, C.D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 2000, vol. 422, pp. 1–54.

    Article  ADS  MathSciNet  Google Scholar 

  7. Guala, M., Hommema, S. E., and Adrian, R. J., Large-scale and very-large-scale motions in turbulent pipe flow, J. Fluid Mech., 2006, vol. 554, pp. 521–542.

    Article  ADS  Google Scholar 

  8. Balakumar, B.J. and Adrian, R.J., Large- and very-large-scale motions in channel and boundary-layer flows, Philos. Trans. R. Soc. Lond. A, 2007, vol. 365, pp. 665–681.

    ADS  MATH  Google Scholar 

  9. Zhou, J., Adrian, R.J., Balachandar, S., and Kendall, T.M., Mechanisms for generating coherent packets of hairpin vortices in channel flows, J. Fluid Mech., 1999, vol. 387, pp. 353–396.

    Article  ADS  MathSciNet  Google Scholar 

  10. Brown, G.L. and Thomas, A.S.W., Large structure in a turbulent boundary layer, Phys. Fluids, 1977, vol. 20, pp. 234–252.

    Article  ADS  Google Scholar 

  11. Ganapathisubramani, B., Longmire, E. K., and Marusic, I., Characteristics of vortex packets in turbulent boundary layers, J. Fluid Mech., 2003, vol. 478, pp. 35–46.

    Article  ADS  Google Scholar 

  12. Tomkins, C.D. and Adrian, R.J., Spanwise structure and scale growth in turbulent boundary layers, J. Fluid Mech., 2003, vol. 490, pp. 37–74.

    Article  ADS  Google Scholar 

  13. Hutchins, N., Hambleton, W.T., and Marusic, I., Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers, J. Fluid Mech., 2005, vol. 541, pp. 21–54.

    Article  ADS  Google Scholar 

  14. Monty, J.P., Stewart, J.A, Williams, R.C., and Chong, M.S., Large-scale features in turbulent pipe and channel flows, J. Fluid Mech., 2007, vol. 589, pp. 147–156.

    Article  ADS  Google Scholar 

  15. Afzal, N., Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer, Ingenieur-Archiv, 1982, vol. 52, pp. 355—377.

    Article  ADS  Google Scholar 

  16. Bailey, S.C.C. and Smits, A.J., Experimental investigation of the structure of large- and very large-scale motions in turbulent pipe flow, J. Fluid Mech., 2010, vol. 651, pp. 339–356.

    Article  ADS  Google Scholar 

  17. Tutkun, M., George, W.K., Delville, J., Stanislas, M., and Johansson, P.B.V., Two-point correlations in high Reynolds number flat plate turbulent boundary layers, J. Turbul., 2009, vol. 10, pp. 1–23.

    Article  ADS  Google Scholar 

  18. Adrian, R.J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 2007, vol. 19, p. 04130.

    Article  Google Scholar 

  19. Townsend, A.A., The structure of Turbulent Shear Flow, Cambridge: Cambridge Univ. Press, 1976.

    MATH  Google Scholar 

  20. Smits, A.J., McKeon, B.J., and Marusic, I., High–Reynolds number wall turbulence, Annu. Rev. Fluid Mech., 2011, vol. 43, pp. 353–375.

    Article  ADS  Google Scholar 

  21. Zagarola, M.V. and Smits, A.J., Mean-flow scaling of turbulent pipe flow, J. Fluid Mech., 1998, vol. 373, pp. 33–79.

    Article  ADS  Google Scholar 

  22. Hultmark, M., Vallikivi, M., Bailey, S.C.C., and Smits, A.J., Logarithmic scaling of turbulence in smooth-and rough-wall pipe flow, J. Fluid Mech., 2013, vol. 728, pp. 376–395.

    Article  ADS  Google Scholar 

  23. Ahn, J., Lee, H. J., Lee, J., Kang, J., and Jin Sung, H., Direct numerical simulation of a 30R long turbulent pipe flow at Reτ = 3008, Physics of Fluids, 2015, vol. 27, p. 065110.

  24. Bailey, S.C.C., Vallikivi, M., Hultmark, M., and Smits, A.J., Estimating the value of von Kármán’s constant in turbulent pipe flow, Fluid Mech., 2014, vol. 749, pp. 79–98.

    Article  ADS  Google Scholar 

  25. Morrison, J. F., McKeon, B. J., Jiang, W., and Smits, A.J., Scaling of the streamwise velocity component in turbulent pipe flow, J. Fluid Mech., 2004, vol. 508, pp. 99–131.

    Article  ADS  Google Scholar 

  26. Chin, C., Ng, H.C.H., Blackburn, H.M., Monty, J.P., and Ooi, A., Turbulent pipe flow at Reτ ≈ 1000: A comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment, Computers and Fluids, 2015, vol. 122, pp. 26–33.

    Article  Google Scholar 

  27. Del Alamo, J.C., Jiménez, J., Zandonade, P., and Moser, R.D., Scaling of the energy spectra of turbulent channels, J. Fluid Mech., 2004, vol. 500, pp. 135–144.

    Article  ADS  Google Scholar 

  28. Taylor, G.I., The spectrum of turbulence, Proc. R. Soc. Lond, 1938, vol. 164, pp. 476–490.

    ADS  MATH  Google Scholar 

  29. Hutchins, N. and Marusic, I., Evidence of very long meandering stream-wise structures in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 2007, vol. 579, pp. 1–2.

    Article  ADS  Google Scholar 

  30. Perry, A.E., Henbest, S., and Chong, M.S., A theoretical and experimental study of wall turbulence, J. Fluid Mech., 1986, vol. 165, pp. 163–199.

    Article  ADS  MathSciNet  Google Scholar 

  31. Del Alamo, J.C. and Jiménez, J., Estimation of turbulent convection velocities and corrections to Taylor’s approximation, J. Fluid Mech., 2009, vol. 640, pp. 5–26.

    Article  ADS  MathSciNet  Google Scholar 

  32. Nickels, T.B., Marusic, I., Hafez, S.M., and Chong, M.S., Evidence of the k −1 law in a high-Reynolds-number turbulent boundary layer, Phys. Rev. Lett., 2005, vol. 95, p. 074501.

  33. Öngüner, E., Experiments in Pipe Flows at Transitional and Very High Reynolds Numbers, PhD. Thesis, Brandenburg University of Technology Cottbus-Senftenberg, Cuvillier Vorlage, 2018, ISBN-13-978-3-73699-783-7.

  34. Rosenberg, B.J., Hultmark, M., Vallikivi, M., Bailey, S.C.C., and Smits, A.J., Turbulence spectra in smooth-and rough-wall pipe flow at extreme Reynolds numbers, J. Fluid Mech., 2013, vol. 731, pp. 46–63.

    Article  ADS  Google Scholar 

  35. Mathis, R., Hutchins, N., and Marusic, I., Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers, J. Fluid Mech., 2009, vol. 628, pp. 311–337.

    Article  ADS  Google Scholar 

  36. Vallikivi, M., Ganapathisubramani, B., and Smits, A.J., Spectral scaling in boundary layers and pipes at very high Reynolds numbers, J. Fluid Mech., 2015, vol. 771, pp. 303–326.

    Article  ADS  Google Scholar 

  37. Bullock, K.J., Cooper, R.E., and Abernathy, F.H., Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow, J. Fluid Mech., 1978, vol. 88, pp. 585–608.

    Article  ADS  Google Scholar 

  38. Perry, A.E. and Abell, C.J., Scaling laws for pipe-flow turbulence, J. Fluid Mech., 1975, vol. 67, pp. 257–271.

    Article  ADS  Google Scholar 

  39. Hallol, Z., Merbold, S., and Egbers, C., Contribution of large and very large scale motions to the turbulent kinetic energy in turbulent pipe flow, Proc. Appl. Math. Mech., 2021, vol. 20, p. e202000229.

  40. Hallol, Z., Behaviour of Energetic Coherent Structures in Turbulent Pipe Flow at High Reynolds Numbers, PhD. Thesis, Brandenburg University of Technology Cottbus-Senftenberg, Cuvillier Vorlage, 2021 b ISBN: 978-3-7369-7501-9.

  41. Monty, J.P., Hutchins, N., Ng, H.C.H., Marusic, I., and Chong, M.S., A comparison of turbulent pipe, channel and boundary layer flows, J. Fluid Mech., 2009, vol. 632, pp. 431–442.

    Article  ADS  Google Scholar 

  42. König, F., Investigation of High Reynolds Number Pipe Flow. Doctoral thesis, PhD. Thesis, Brandenburg University of Technology Cottbus-Senftenberg, Cuvillier Vorlage, 2015, ISBN13 978-3-73699-049-4.

Download references

ACKNOWLEDGMENTS

The authors also wish to thank our colleague El-Sayed Zanoun for his support during hot-wire anemometry measurements.

Funding

The authors wish to thank the DFG (grant no. EG100/24) for the experimental finance and BTU Gleichstellungsbüro (women equality office) for their support and research finance, as well as the EFRE program of EU for financial support for the measurement system.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. A. Hallol or C. Egbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallol, Z.A., Yousry, M.I., Merbold, S. et al. Effect of High Reynolds Number on the Behaviour of Large and Very Large Scale Motions in Fully Developed Turbulent Pipe Flow. Fluid Dyn 57, 524–537 (2022). https://doi.org/10.1134/S0015462822040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822040048

Keywords:

Navigation