Skip to main content
Log in

AC Electric Discharges in Gas–Liquid Medium of a Sodium Chloride Solution at Atmospheric Pressure

  • SHORT COMMUNICATIONS
  • Published:
High Temperature Aims and scope

Abstract

The results of experimental studies of the electric discharge of alternating current (f = 50 Hz) in a gas–liquid environment of an electrolyte with bubbles for interelectrode distances of 50–150 mm inside a dielectric tube are presented. The presence of a bubble structure with microdischarges affects the nature of the discharge current and voltage ripples. The frequency spectrum of voltage and current oscillations of the discharge is established using the fast Fourier transform. Based on the analysis of the experimental data, the mechanism for the development of an alternating current electric discharge in a medium with microbubbles is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Fortov, V.E., Son, E.E., Isakaev M.-E.Kh., and Karpukhin, A.V., RF Patent 2516307, 2012.

  2. Torshin, Yu.V., High Temp., 2010, vol. 48, no. 5, p. 629.

    Article  Google Scholar 

  3. Torshin, Yu.V., Fizicheskie protsessy formirovaniya elektricheskogo proboya kondensirovannykh dielektrikov (Physical Processes of Formation of Electrical Breakdown of Condensed Dielectrics), Moscow: Energoatomizdat, 2008.

  4. Gaisin, Az.F., Sadriev, R.Sh., Bagautdinova, L.N., Nasibullin, R.T., Gaisin, F.M., and Mastyukov, Sh.Ch., High Temp., 2020, vol. 58, no. 6, p. 777.

    Article  Google Scholar 

  5. Bulychev, N.A., Kazaryan, M.A., Ivashkin, P.I., Zakharyan, R.A., Averyushkin, A.S., Chernov, A.A., and Chaikov, L.L., Kratk. Soobshch. Fiz. FIAN, 2017, vol. 44, no. 2, p. 9.

    Google Scholar 

  6. Panov, V.A., Vasilyak, L.M., Vetchinin, S.P., Pecherkin, V.Ya., and Son, E.E., Prikl. Fiz., 2016, no. 1, p. 61.

  7. Panov, V.A., Kulikov, Yu.M., and Son, E.E., RF Patent 134921, 2013.

  8. Son, E.E., Suvorov, I.F., Kakurov, S.V., Gaisin, A.F., Samitova, G.T., Solov’eva, T.L., Yudin, A.S., and Rakhletsova, T.V., High Temp., 2014, vol. 52, no. 4, p. 490.

    Article  Google Scholar 

  9. Mardanov, R.R., Kayumo, R.R., Akhatov, M.F., and Gaisin, A.F., J. Phys.: Conf. Ser., 2020, vol. 1588, no. 1, 012029.

  10. Galimzyanov, I.I., Gaisin, A.F., Fakhrutdinova, I.T., Shakirova, E.F., Akhatov, M.F., and Kayumov, R.R., High Temp., 2018, vol. 56, no. 2, p. 296.

    Article  Google Scholar 

  11. Bykov, A.A., Cand. Sci. (Eng.) Dissertation, Moscow: Gubkin Russ. State Univ Oil Gas, 2011.

  12. Dolgoborodova, S.N., Fundam. Issled., 2014, no. 12, p. 1398.

Download references

Funding

The study was supported by a grant from the Russian Science Foundation, project no. 21-79-30062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Bagautdinova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiev, R.I., Khafizov, A.A., Bagautdinova, L.N. et al. AC Electric Discharges in Gas–Liquid Medium of a Sodium Chloride Solution at Atmospheric Pressure. High Temp 60 (Suppl 1), S127–S130 (2022). https://doi.org/10.1134/S0018151X21040210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21040210

Navigation