Skip to main content
Log in

Reactivity of Mesenteric Arteries in the Development of Metabolic Syndrome in Rats Fed on a High-Fat Diet

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

High-fat diet (HFD) can lead to the development of metabolic syndrome (MS). However, the issue of the mechanisms underlying pathophysiological processes in MS has not been studied enough. The aim of the work was to study in vivo the effect of a high-fat diet (HFD) on the reactivity of the mesenteric arteries in Wistar rats, as well as to evaluate a change of the mechanisms of endothelium-dependent arterial dilation in HFD. The HFD group of rats (n = 25) were fed on a HFD containing 50% animal fat for 10 weeks, while the control group (n = 25) received a standard diet. The effect of HFD on endothelium-dependent and endothelium-independent responses of the mesenteric arteries exposed to agonists in the absence and presence of the blockers of NO synthase (L-NAME), cyclooxygenase (indomethacin), and K+ channels (tetraethylammonium) was assessed using photomicrography and in vivo video registration of the mesenteric artery diameter. HFD led to the development of MS, including dyslipidemia, hyperglycemia and insulin resistance, and an increase in blood pressure. MS was accompanied by a functional impairment of the mesenteric arteries. In the HFD vs. control group, there was a 29% increase in the constrictor response to phenylephrine, as well as a 36% decrease in the reactivity of phenylephrine-preconstricted vessels exposed to acetylcholine (ACh). In the HFD group, preincubation of vessels with blockers reduced the amplitude of ACh-induced vasorelaxation compared to the baseline ACh-induced vasorelaxation: with L-NAME by 47%, L-NAME and indomethacin by 50%, L-NAME, indomethacin and tetraethylammonium by 65%; in the control group, by 69, 72 and 83%, respectively. HFD had no significant effect on the amplitude of sodium nitroprusside-induced vasodilation. Thus, endothelial dysfunction in HFD-exposed rats was mediated both by the impairment of NO-dependent mechanisms of vasodilation (specifically, by a decrease in endothelial NO production) and by a decrease in the efficiency of BKСа channels. Decreased NO bioavailability in HFD was partially compensated by the activation of the mechanisms of IKCa- and SKCa-mediated endothelium-dependent hyperpolarization in ACh-induced vasodilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Bovolini A, Garcia J, Andrade MA, Duarte JA (2021) Metabolic Syndrome Pathophysiology and Predisposing Factors. Int J Sports Med 42(3): 199–214. https://doi.org/10.1055/a-1263-0898

    Article  PubMed  Google Scholar 

  2. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL (2017) Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 11(8): 215–225. https://doi.org/10.1177/1753944717711379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S (2016) Animal models of metabolic syndrome: a review. Nutr Metab 13: 65. https://doi.org/10.1186/s12986-016-0123-9

    Article  CAS  Google Scholar 

  4. Abdulrahman AO, Kuerban A, Alshehri ZA, Abdulaal WH, Khan JA, Khan MI (2020) Urolithins Attenuate Multiple Symptoms of Obesity in Rats Fed on a High-Fat Diet. Diabetes Metab Syndr Obes 13: 3337–3348. https://doi.org/10.2147/DMSO.S268146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120: 1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

  6. Koliaki C, Liatis S, Kokkinos A (2019) Obesity and Cardiovascular Disease: Revisiting an Old Relationship. Metabolism 92: 98–107. https://doi.org/10.1016/j.metabol.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  7. Stanek A, Fazeli B, Bartuś S, Sutkowska E (2018) The Role of Endothelium in Physiological and Pathological States: New Data. BioMed Res Int 2018: e1098039. https://doi.org/10.1155/2018/1098039

    Article  Google Scholar 

  8. Suzuki T, Hirata K, Elkind MS, Jin Z, Rundek T, Miyake Y, BodenAlbala B, Di Tullio MR, Sacco R, Homma S (2008) Metabolic syndrome, endothelial dysfunction, and risk of cardiovascular events: the Northern Manhattan Study (NOMAS). Am Heart J 156(2): 405–410. https://doi.org/10.1016/j.ahj.2008.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dow CA, Stauffer BL, Greiner JJ, DeSouza CA (2015) Influence of habitual high dietary fat intake on endothelium-dependent vasodilation. Appl Physiol Nutr Metab 40(7): 711–715. https://doi.org/10.1139/apnm-2015-0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lozano-Cuenca J, Valencia-Hernández I, López-Canales OA, Flores-Herrera H, López-Mayorga RM, Castillo-Henkel EF, López-Canales JS (2020) Possible mechanisms involved in the effect of the subchronic administration of rosuvastatin on endothelial function in rats with metabolic syndrome. Braz J Med Biol Res 53(2): e9304. https://doi.org/10.1590/1414-431X20199304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oishi JC, Castro CA, Silva KA, Fabricio V, Cárnio EC, Phillips SA, Duarte ACGO, Rodrigues GJ (2018) Endothelial Dysfunction and Inflammation Precedes Elevations in Blood Pressure Induced by a High-Fat Diet. Arq Bras Cardiol 110(6): 558–567. https://doi.org/10.5935/abc.20180086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oliva L, Aranda T, Caviola G, Fernández-Bernal A, Alemany M, Fernández-López JA, Remesar X (2017) In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. Peer J 5: e3697. https://doi.org/10.7717/peerj.3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramalho L, da Jornada MN, Antunes LC, Hidalgo MP (2017) Metabolic disturbances due to a high-fat diet in a non-insulin-resistant animal model. Nutr Diabetes 7(3): e245. https://doi.org/10.1038/nutd.2016.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia ML, Milanez MIO, Nishi EE, Sato AYS, Carvalho PM, Nogueira FN, Campos RR, Oyama LM, Bergamaschi CT (2021) Retroperitoneal adipose tissue denervation improves cardiometabolic and autonomic dysfunction in a high fat diet model. Life Sci 283: 119841. https://doi.org/10.1016/j.lfs.2021.119841

    Article  CAS  PubMed  Google Scholar 

  15. Gradel AKJ, Salomonsson M, Sørensen CM, Holstein-Rathlou NH, Jensen LJ (2018) Long-term diet-induced hypertension in rats is associated with reduced expression and function of small artery SKCa, IKCa, and Kir2.1 channels. Clin Sci (Lond) 132(4): 461–474. https://doi.org/10.1042/CS20171408

  16. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between Adipocyte Size and Adipokine Expression and Secretion. J Clin Endocrinol Metab 92: 1023–1033. https://doi.org/10.1210/jc.2006-1055

    Article  CAS  PubMed  Google Scholar 

  17. Sudhakar M, Silambanan S, Chandran AS, Prabhakaran AA, Ramakrishnan R (2018) C-Reactive Protein (CRP) and Leptin Receptor in Obesity: Binding of Monomeric CRP to Leptin Receptor. Front Immunol 9: 1167. https://doi.org/10.3389/fimmu.2018.01167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahajan R, Lau DH, Sanders P (2015) Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc Med 25:119–126. https://doi.org/10.1016/j.tcm.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  19. Gutiérrez-Cuevas J, Sandoval-Rodríguez A, Monroy-Ramírez HC, Mercado MV-D, Santos-García A, Armendáriz-Borunda J (2020) Prolonged-release pirfenidone prevents obesity-induced cardiac steatosis and fibrosis in a mouse NASH model. Cardiovasc Drugs Ther 35(5): 927–938. https://doi.org/10.1007/s10557-020-07014-9

    Article  CAS  Google Scholar 

  20. Kwiatkowski G, Bar A, Jasztal A, Chłopicki S (2021) MRI-based in vivo detection of coronary microvascular dysfunction before alterations in cardiac function induced by short-term high-fat diet in mice. Sci Rep 11(1): 18915. https://doi.org/10.1038/s41598-021-98401-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang XY, Guo CC, Yu YX, Xie L, Chang CQ (2020) [Establishment of high-fat diet-induced obesity and insulin resistance model in rats]. Beijing Da Xue Xue Bao Yi Xue Ban 52(3): 557–563. Chinese. https://doi.org/10.19723/j.issn.1671-167X.2020.03.024

    Article  CAS  PubMed  Google Scholar 

  22. Azemi AK, Siti-Sarah AR, Mokhtar SS, Rasool AHG (2022) Time-Restricted Feeding Improved Vascular Endothelial Function in a High-Fat Diet-Induced Obesity Rat Model. Vet Sci 9(5): 217. https://doi.org/10.3390/vetsci9050217

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tsareva IA, Ivanova GT, Lobov GI (2022) Early Functional Changes in Rat Arteries and Microcirculatory Vessels while Modeling Metabolic Syndrome. J Evol Biochem Phys 58: 1471–1481. https://doi.org/10.1134/S0022093022050179

    Article  CAS  Google Scholar 

  24. Ledoux J, Werner EM, Brayden EJ, Nelson TM (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology 21: 69–78. https://doi.org/10.1152/physiol.00040.2005

    Article  CAS  PubMed  Google Scholar 

  25. Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B (2015) Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS ONE 10(9): 1–17. https://doi.org/10.1371/journal.pone.0138609

    Article  CAS  Google Scholar 

  26. Madkhali HA (2020) Morin attenuates high-fat diet induced-obesity related vascular endothelial dysfunction in Wistar albino rats. Saudi Pharm J 28(3): 300–307. https://doi.org/10.1016/j.jsps.2020.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rubanyi GM (1991) Endothelium-derived relaxing and contracting factors. J Cell Biochem 46(1): 27–36. https://doi.org/10.1002/jcb.240460106

    Article  CAS  PubMed  Google Scholar 

  28. Freed JK, Gutterman DD (2017) Communication Is Key: Mechanisms of Intercellular Signaling in Vasodilation. J Cardiovasc Pharmacol 69(5): 264–272. https://doi.org/10.1097/FJC.0000000000000463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dimassi S, Chahed K, Boumiza S, Canault M, Tabka Z, Laurant P, Riva C (2016) Role of eNOS- and NOX-containing microparticles in endothelial dysfunction in patients with obesity. Obesity 24: 1305–1312. https://doi.org/10.1002/oby.21508

    Article  CAS  PubMed  Google Scholar 

  30. Schinzari F, Iantorno M, Campia U, Mores N, Rovella V, Tesauro M, Di Daniele N, Cardillo C (2015) Vasodilator responses and endothelin-dependent vasoconstriction in metabolically healthy obesity and the metabolic syndrome. Am J Physiol Endocrinol Metab 309(9): E787–E792. https://doi.org/10.1152/ajpendo.00278.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Looft-Wilson RC, Ashley BS, Billig JE, Wolfert MR, Ambrecht LA, Bearden SE (2008) Chronic diet-induced hyperhomocysteinemia impairs eNOS regulation in mouse mesenteric arteries. Am J Physiol Regul Integr Comp Physiol 295(1): R59–R66. https://doi.org/10.1152/ajpregu.00833.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giles TD, Sander GE, Nossaman BD, Kadowitz PJ (2012) Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich) 14(4): 198–205. https://doi.org/10.1111/j.1751-7176.2012.00606.x

  33. Parkington HC, Coleman HA, Tare M (2004) Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res 49(6): 509–514. https://doi.org/10.1016/j.phrs.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  34. Rubio-Ruiz ME, Pérez-Torres I, Diaz-Diaz E, Pavón N, Guarner-Lans V (2014) Non-steroidal anti-inflammatory drugs attenuate the vascular responses in aging metabolic syndrome rats. Acta Pharmacol Sin 35(11): 1364–1374. https://doi.org/10.1038/aps.2014.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin X, Satoh-Otonashi Y, Zamami Y, Takatori S, Hashikawa-Hobara N, Kitamura Y, Kawasaki H (2011) New molecular mechanisms for cardiovascular disease: contribution of endothelium-derived hyperpolarizing factor in the regulation of vasoconstriction in peripheral resistance arteries. J Pharmacol Sci 116(4): 332–336. https://doi.org/10.1254/jphs.10r30fm

    Article  CAS  PubMed  Google Scholar 

  36. Mandalà M, Gokina N, Barron C, Osol G (2012) Endothelial-derived hyperpolarization factor (EDHF) contributes to PLGF-induced dilation of mesenteric resistance arteries from pregnant rats. J Vasc Res 49: 43–49. https://doi.org/10.1159/000329821

    Article  CAS  PubMed  Google Scholar 

  37. Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23(8): 374-80. https://doi.org/10.1016/s0165-6147(02)02050-3

    Article  CAS  PubMed  Google Scholar 

  38. Tykocki NR, Boerman EM, Jackson WF (2017) Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 7(2): 485-581. https://doi.org/10.1002/cphy.c160011.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Köhler R, Olivan-Viguera A, Wulff H (2016) Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease. Adv Pharmacol 77: 65–104. https://doi.org/10.1016/bs.apha.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  40. Félétou M (2016) Endothelium-Dependent Hyperpolarization and Endothelial Dysfunction. J Cardiovasc Pharm 67: 373–387. https://doi.org/10.1097/FJC.0000000000000346

    Article  CAS  Google Scholar 

  41. Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS, Sandow SL (2011) Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS One 6(1): e16423. https://doi.org/10.1371/journal.pone.0016423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the State Program 47 SP “Scientific and Technological Development of the Russian Federation” (2019–2030), theme reg. no. 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. T. Ivanova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All manipulations with animals complied with the principles of the Basel Declaration and were approved by the Ethics Committee of Pavlov Institute of Physiology (Russian Academy of Sciences).

CONFLICT OF INTEREST

The author declares that she has neither evident nor potential conflict of interest that might be related with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 1, pp. 61–74https://doi.org/10.31857/S0869813923010089.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, G.T. Reactivity of Mesenteric Arteries in the Development of Metabolic Syndrome in Rats Fed on a High-Fat Diet. J Evol Biochem Phys 59, 154–164 (2023). https://doi.org/10.1134/S0022093023010131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023010131

Keywords:

Navigation