Skip to main content
Log in

Large Deviation Principle for Terminating Multidimensional Compound Renewal Processes with Application to Polymer Pinning Models

  • LARGE SYSTEMS
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We obtain a large deviations principle for terminating multidimensional compound renewal processes. We also obtain the asymptotics of large deviations for the case where a Gibbs change of the original probability measure takes place. The random processes mentioned in the paper are widely used in polymer pinning models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mogulskii, A.A. and Prokopenko, E.I., Large Deviation Principle for Multidimensional First Compound Renewal Processes in the Phase Space, Sib. Elektron. Mat. Izv., 2019, vol. 16, pp. 1464⁠–⁠1477. https://doi.org/10.33048/semi.2019.16.101

    Article  Google Scholar 

  2. Mogulskii, A.A. and Prokopenko, E.I., Large Deviation Principle for Multidimensional Second Compound Renewal Processes in the Phase Space, Sib. Elektron. Mat. Izv., 2019, vol. 16, pp. 1478⁠–⁠1492. https://doi.org/10.33048/semi.2019.16.102

    Article  Google Scholar 

  3. Tsirelson, B., From Uniform Renewal Theorem to Uniform Large and Moderate Deviations for Renewal-Reward Processes, Electron. Commun. Probab., 2013, vol. 18, no. 52, pp. 1⁠–⁠13. https://doi.org/10.1214/ECP.v18-2719

    MathSciNet  MATH  Google Scholar 

  4. Borovkov, A.A. and Mogulskii, A.A., Integro-Local Limit Theorems for Compound Renewal Processes under Cramér’s Condition. I, II, Sibirsk. Mat. Zh., 2018, vol. 59, no. 3, pp. 491⁠–⁠513; no. 4, pp. 736⁠–⁠758 [Sib. Math. J. (Engl. Transl.), 2018, vol. 59, no. 3, pp. 383⁠–⁠402; no. 4, pp. 578⁠–⁠597]. https://doi.org/10.1134/S0037446618030023; https://doi.org/10.1134/S003744661804002X

    MathSciNet  MATH  Google Scholar 

  5. Mogulskii, A.A. and Prokopenko, E.I., Integro-Local Theorems for Multidimensional Compound Renewal Processes, when Cramer’s Condition Holds. I, II, III, Sib. Elektron. Mat. Izv., 2018, vol. 15, pp. 475⁠–⁠502; 503⁠–⁠527; 528⁠–⁠553. https://doi.org/10.17377/semi.2018.15.041; https://doi.org/10.17377/semi.2018.15.042; https://doi.org/10.17377/semi.2018.15.043

    MATH  Google Scholar 

  6. Mogul’skiĭ, A.A. and Prokopenko, E.I., Local Theorems for Arithmetic Multidimensional Compound Renewal Processes under Cramér’s Condition, Mat. Tr., 2019, vol. 22, no. 2, pp. 106⁠–⁠133 [Siberian Adv. Math. (Engl. Transl.), 2020, vol. 30, no. 4, pp. 284⁠–⁠302]. https://doi.org/10.1134/S1055134420040033

    Article  MathSciNet  Google Scholar 

  7. Logachov, A., Mogulskii, A., Prokopenko, E., and Yambartsev, A., Local Theorems for (Multidimensional) Additive Functionals of Semi-Markov Chains, Stochastic Process. Appl., 2021, vol. 137, pp. 149⁠–⁠166. https://doi.org/10.1016/j.spa.2021.03.011

    Article  MathSciNet  Google Scholar 

  8. Mogul’skiĭ, A.A. and Prokopenko, E.I., The Large Deviation Principle for Finite-Dimensional Distributions of Multidimensional Renewal Processes, Mat. Tr., 2020, vol. 23, no. 2, pp. 148⁠–⁠176 [Siberian Adv. Math. (Engl. Transl.), 2021, vol. 31, no. 3, pp. 188⁠–⁠208]. https://doi.org/10.1134/S1055134421030032

    Article  Google Scholar 

  9. Logachov, A.V. and Mogulskii, A.A., Local Theorems for Finite-Dimensional Increments of Compound Multidimensional Arithmetic Renewal Processes with Light Tails, Sib. Elektron. Mat. Izv., 2020, vol. 17, pp. 1766⁠–⁠1786. https://doi.org/10.33048/semi.2020.17.120

    Article  Google Scholar 

  10. Borovkov, A.A. and Mogulskii, A.A., Large Deviation Principles for Trajectories of Compound Renewal Processes. I, II, Teor. Veroyatn. Primen., 2015, vol. 60, no. 2, pp. 227⁠–⁠247; no. 3, pp. 417⁠–⁠438 [Theory Probab. Appl. (Engl. Transl.), 2016, vol. 60, no. 2, pp. 207⁠–⁠224; no. 3, pp. 349⁠–⁠366]. https://doi.org/10.1137/S0040585X97T987582; https://doi.org/10.1137/S0040585X97T987727

    Article  MathSciNet  Google Scholar 

  11. Logachov, A.V. and Mogulskii, A.A., Anscombe-type Theorem and Moderate Deviations for Trajectories of a Compound Renewal Process, J. Math. Sci. (N.Y.), 2018, vol. 229, pp. 36⁠–⁠50. https://doi.org/10.1007/s10958-018-3661-z

    Article  MathSciNet  Google Scholar 

  12. Mogul’skiĭ, A.A., The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process, Mat. Tr., 2021, vol. 24, no. 1, pp. 142⁠–⁠174 [Siberian Adv. Math. (Engl. Transl.), 2022, vol. 32, no. 1, pp. 35⁠–⁠57]. https://doi.org/10.1134/S1055134422010047

    Article  Google Scholar 

  13. Lefevere, R., Mariani, M., and Zambotti, L., Large Deviations for Renewal Processes, Stochastic Process. Appl., 2011, vol. 121, no. 10, pp. 2243⁠–⁠2271. https://doi.org/10.1016/j.spa.2011.06.005

    Article  MathSciNet  Google Scholar 

  14. Bakay, G.A., Large Deviations for a Terminating Compound Renewal Process, Teor. Veroyatn. Primen., 2021, vol. 66, no. 2, pp. 261⁠–⁠283 [Theory Probab. Appl. (Engl. Transl.), 2021, vol. 66, no. 2, pp. 209⁠–⁠227]. https://doi.org/10.1137/S0040585X97T990356

    Article  Google Scholar 

  15. Zamparo, M., Large Deviations in Renewal Models of Statistical Mechanics, J. Phys. A: Math. Theor., 2019, vol. 52, no. 49, p. 495004 (31 pp.). https://doi.org/10.1088/1751-8121/ab523f

    Article  MathSciNet  Google Scholar 

  16. Zamparo, M., Large Deviations in Discrete-Time Renewal Theory, Stochastic Process. Appl., 2021, vol. 139, pp. 80⁠–⁠109. https://doi.org/10.1016/j.spa.2021.04.014

    Article  MathSciNet  Google Scholar 

  17. Giacomin, G., Random Polymer Models, London: Imperial College Press, 2007.

    Book  Google Scholar 

  18. den Hollander, F., Random Polymers, New York: Springer, 2009.

    Book  Google Scholar 

  19. Zălinescu, C., Convex Analysis in General Vector Spaces, River Edge, N.J.; London: World Sci., 2002.

    Book  Google Scholar 

  20. Mogulskii, A.A. and Prokopenko, E.I., The Rate Function and the Fundamental Function for Multidimensional Compound Renewal Process, Sib. Elektron. Mat. Izv., 2019, vol. 16, pp. 1449⁠–⁠1463. https://doi.org/10.33048/semi.2019.16.100

    Article  Google Scholar 

  21. Logachov, A., Mogulskii, A., and Prokopenko, E., Large Deviations Principle for Terminating Multidimensional Compound Renewal Processes with Application to Polymer Pinning Models, https://arXiv.org/abs/2112.09640 [math.PR], 2021.

  22. Borovkov, A.A., Asimptoticheskii analiz sluchainykh bluzhdanii. Bystro ubyvayushchie raspredeleniya prirashchenii (Asymptotic Analysis of Random Walks. Rapidly Decreasing Distributions of Increments), Moscow: Fizmatlit, 2013.

    Google Scholar 

Download references

Funding

The research was carried out at the Mathematical Center in Akademgorodok, Novosibirsk, agreement no. 075-15-2022-282 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2022, Vol. 58, No. 2, pp. 48–65 https://doi.org/10.31857/S0555292322020053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logachov, A., Mogulskii, A. & Prokopenko, E. Large Deviation Principle for Terminating Multidimensional Compound Renewal Processes with Application to Polymer Pinning Models. Probl Inf Transm 58, 144–159 (2022). https://doi.org/10.1134/S0032946022020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946022020053

Keywords

Navigation