Skip to main content
Log in

Thermodynamic Properties of a Hyperbranched Pyridylphenylene Polymer with a Phenylene Bridging Group

  • HEAT CAPACITY: EXPERIMENTS AND CALCULATIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Precision adiabatic vacuum calorimetry and differential scanning calorimetry in the range of 6–650 K are used to study the temperature dependence of the heat capacity of a hyperbranched pyridylphenylene polymer with a phenylene bridging group. An anomalous change in the heat capacity (a glassy G transition) is revealed in the low-temperature range of 10–18 K. The heat capacity curve displays an exothermic effect starting from T = 400 K, due to the crosslinking of hyperbranched polymer macromolecules. The obtained experimental data are used to calculate the polymer’s standard thermodynamic functions for the range of T → 0 to 400 K, along with the standard entropy of its formation at T = 298.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hyperbranched Polymers: Synthesis, Properties, and Applications, Ed. by D. Yan, C. Gao, and H. Frey (Wiley, Hoboken, NJ, 2011).

    Google Scholar 

  2. B. I. Voit and A. Lederer, Chem. Rev. 109, 5924 (2009).

    Article  CAS  Google Scholar 

  3. D. A. Tomalia, Prog. Polym. Sci. 30, 294 (2005).

    Article  CAS  Google Scholar 

  4. G. R. Newkome and C. D. Shreiner, Polymer 49, 1 (2008).

    Article  CAS  Google Scholar 

  5. A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. M. Myakushev, M. A. Obrezkova, I. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, Polymer Sci., Ser. C 53, 48 (2011).

    Article  CAS  Google Scholar 

  6. Y. Zheng, S. Li, Z. Weng, et al., Chem. Soc. Rev. 44, 4091 (2015).

    Article  CAS  Google Scholar 

  7. M. Erber, S. Boye, T. Hartmann, et al., J. Polym. Sci., Part A 47, 5158 (2009).

    Article  CAS  Google Scholar 

  8. R. Spindler and J. M. J. Fréchet, Macromolecules 26, 4809 (1993).

    Article  CAS  Google Scholar 

  9. A. Kumar and S. Ramakrishnan, J. Polym. Sci., Part A 34, 839 (1996).

    Article  CAS  Google Scholar 

  10. L. J. Mathias and T. W. Carothers, J. Am. Chem. Soc. 113, 4043 (1991).

    Article  CAS  Google Scholar 

  11. A. M. Muzafarov, E. A. Tatarinova, N. V. Vasilenko, et al., in Organosilicon Compounds: Experiment (Physico-Chemical Studies) and Applications, Ed. by V. Ya. Lee (Academic, Cambridge, MA, 2017), p. 323.

    Google Scholar 

  12. L. J. Hobson and W. J. Feast, Polymer 40, 1279 (1999).

    Article  CAS  Google Scholar 

  13. Y. Ohta, Y. Kamijyo, S. Fujii, et al., Macromolecules 44, 5112 (2011).

    Article  CAS  Google Scholar 

  14. X. Zheng, I. R. Oviedo, and L. J. Twyman, Macromolecules 41, 7776 (2008).

    Article  CAS  Google Scholar 

  15. N. Hu, J. Y. Yin, Q. Tang, et al., J. Polym. Sci., Part A 49, 3826 (2011).

    Article  CAS  Google Scholar 

  16. N. Baird, J. W. Dittmar, Y. B. Losovyj, et al., ACS Appl. Mater. Interfaces 9, 2285 (2017).

    Article  CAS  Google Scholar 

  17. H. Zhang, A. Patel, A. K. Gaharwar, et al., Biomacromolecules 14, 1299 (2013).

    Article  CAS  Google Scholar 

  18. R. Duncan and M. J. Vicent, Adv. Drug Deliv. Rev. 65, 60 (2013).

    Article  CAS  Google Scholar 

  19. D. Wang, T. Zhao, X. Zhu, et al., Chem. Soc. Rev. 44, 4023 (2015).

    Article  CAS  Google Scholar 

  20. S. Li, M. Omi, F. Cartieri, et al., Biomacromolecules 19, 3754 (2018).

    Article  CAS  Google Scholar 

  21. G. S. Liou, H. Y. Lin, and H. J. Yen, J. Mater. Chem. 19, 7666 (2009).

    Article  CAS  Google Scholar 

  22. O. G. Zakharova, N. N. Smirnova, A. V. Markin, et al., Thermochim. Acta 468, 61 (2008).

    Article  CAS  Google Scholar 

  23. N. N. Smirnova, Yu. A. Zakharova, V. A. Ruchenin, and O. G. Zamyshlyayeva, Russ. J. Phys. Chem. A 86, 539 (2012).

    Article  CAS  Google Scholar 

  24. N. N. Smirnova, A. V. Markin, Yu. A. Zakharova, et al., Russ. Chem. Bull. 60, 132 (2011).

    Article  CAS  Google Scholar 

  25. N. N. Smirnova, Yu. A. Zakharova, A. V. Markin, et al., Russ. Chem. Bull. 62, 2258 (2013).

    Article  CAS  Google Scholar 

  26. N. N. Smirnova, A. V. Markin, S. S. Sologubov, E. S. Serkova, N. V. Kuchkina, and Z. B. Shifrina, Russ. J. Phys. Chem. A 94, 261 (2020).

    Article  CAS  Google Scholar 

  27. N. V. Kuchkina, M. S. Zinatullina, E. S. Serkova, et al., RSC Adv. 5, 99510 (2015).

    Article  CAS  Google Scholar 

  28. J. Meija, T. B. Coplen, M. Berglund, et al., Pure Appl. Chem. 88, 265 (2016).

    Article  CAS  Google Scholar 

  29. V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, et al., Prib. Tekh. Eksp., No. 6, 195 (1985).

  30. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).

    Article  CAS  Google Scholar 

  31. R. Sabbah, A. Xu-Wu, J. S. Chickos, et al., Thermochim. Acta 331, 93 (1999).

    Article  CAS  Google Scholar 

  32. G. W. H. Höhne, W. F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, 2003).

    Book  Google Scholar 

  33. V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).

    Article  CAS  Google Scholar 

  34. B. Wunderlich and H. Bauer, Heat Capacities of Linear Polymers (Springer, Berlin, 1970).

    Book  Google Scholar 

  35. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  36. W. Kauzmann, Chem. Rev. 43, 219 (1948).

    Article  CAS  Google Scholar 

  37. A. B. Bestul and S. S. Chang, J. Chem. Phys. 40, 3731 (1964).

    Article  CAS  Google Scholar 

  38. V. B. Lazarev, A. D. Izotov, K. S. Gavrichev, et al., Thermochim. Acta 269–270, 109 (1995).

    Article  Google Scholar 

  39. O. V. Shebershneva, A. D. Izotov, K. S. Gavrichev, and V. B. Lazarev, Inorg. Mater. 32, 28 (1996).

    CAS  Google Scholar 

  40. P. Debye, Ann. Phys. (N.Y.) 344, 789 (1912).

    Article  Google Scholar 

  41. Experimental Thermodynamics, Vol. 1: Calorimetry of Non-reacting Systems, Ed. by J. P. McCullough and D. W. Scott (Butterworth, London, UK, 1968).

  42. M. W. Chase, Jr., J. Phys. Chem. Ref. Data, Monograph 9 (1–2), 1 (1998).

    Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education, project no. 0729-2020-0039; the Priority 2030 Strategic Academic Leadership Program, project N-489-99_2021-2022; and RF Presidential Grant for Young Scientists and Graduate Students no. SP-1369.2022.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markin.

Additional information

Translated by E. Domoroshchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markin, A.V., Smirnova, N.N., Sologubov, S.S. et al. Thermodynamic Properties of a Hyperbranched Pyridylphenylene Polymer with a Phenylene Bridging Group. Russ. J. Phys. Chem. 96, 1888–1894 (2022). https://doi.org/10.1134/S0036024422090230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422090230

Keywords:

Navigation