Skip to main content
Log in

Kantorovich Problems with a Parameter and Density Constraints

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We discuss Kantorovich problems with a parameter and density constraints. Also we give some new results on the continuity of solutions with respect to a parameter along with a survey of results on measurability of solutions with respect to a parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kantorovich L. V., “On the translocation of masses,” Dokl. Acad. Nauk. SSSR, vol. 37, no. 7–8, 227–229 (1942) (J. Math.Sci. (New York), vol. 133, no. 4, 1381–1382 (2006)).

    MathSciNet  Google Scholar 

  2. Kantorovich L. V., “On a problem of Monge,” Uspekhi Mat. Nauk, vol. 3, no. 2, 225–226 (1948) (J. Math. Sci. (New York), vol. 133, no. 4, 1383 (2006)).

    Google Scholar 

  3. Kantorovich L. V. and Rubinshtein G. Sh., “On a functional space and certain extremum problems,” Dokl. Akad. Nauk SSSR, vol. 115, no. 6, 1058–1061 (1957).

    MathSciNet  MATH  Google Scholar 

  4. Kantorovich L. V. and Rubinshtein G. Sh., “On a space of completely additive functions,” Vestnik Leningrad. Univ., vol. 7, no. 2, 52–59 (1958).

    MathSciNet  MATH  Google Scholar 

  5. Kantorovich L. V. and Akilov G. P., Functional Analysis. 2nd ed., Pergamon, Oxford (1982).

    MATH  Google Scholar 

  6. Ambrosio L. and Gigli N., “A user’s guide to optimal transport,” Lecture Notes Math., vol. 2062, 1–155 (2013).

    Article  MathSciNet  Google Scholar 

  7. Bogachev V. I. and Kolesnikov A. V., “The Monge–Kantorovich problem: achievements, connections, and prospects,” Russian Math. Surveys, vol. 67, no. 5, 785–890 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogachev V. I., Weak Convergence of Measures, Amer. Math. Soc., Providence (2018).

    Book  MATH  Google Scholar 

  9. Figalli A. and Glaudo F., An Invitation to Optimal Transport Wasserstein Distances, and Gradient Flows, EMS, Berlin (2021).

    Book  MATH  Google Scholar 

  10. Gangbo W. and McCann R. J., “The geometry of optimal transportation,” Acta Math., vol. 177, 113–161 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. Rachev S. T. and Rüschendorf L., Mass Transportation Problems. Vols. I and II, Springer, New York (1998).

    MATH  Google Scholar 

  12. Santambrogio F., Optimal Transport for Applied Mathematicians, Birkhäuser and Springer, Cham (2015).

    Book  MATH  Google Scholar 

  13. Villani C., Topics in Optimal Transportation, Amer. Math. Soc., Providence (2003).

    Book  MATH  Google Scholar 

  14. Villani C., Optimal Transport, Old and New, Springer, New York (2009).

    Book  MATH  Google Scholar 

  15. Vershik A. M., “Kantorovich metric: Initial history and little-known applications,” J. Math. Sci. (New York), vol. 133, no. 4, 1410–1417 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. Kantorovich L. V., Mathematical-Economic Articles. Selected Works, Nauka, Novosibirsk (2011) [Russian].

    MATH  Google Scholar 

  17. Pratelli A., “On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation,” Ann. Inst. H. Poincaré (B), Probab. Statist., vol. 43, no. 1, 1–13 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. Lipchius A. A., “A note on the equality in the problems of Monge and Kantorovich,” Theory Probab. Appl., vol. 50, no. 4, 689–693 (2005).

    Article  MATH  Google Scholar 

  19. Bogachev V. I., Kalinin A. N., and Popova S. N., “On the equality of values in the Monge and Kantorovich problems,” J. Math. Sci. (New York), vol. 238, no. 4, 377–389 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. Bogachev V. I. and Kalinin A. N., “A continuous cost function for which the minima in the Monge and Kantorovich problems are not equal,” Dokl. Math., vol. 92, no. 1, 452–455 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. Zaev D. A., “On the Monge–Kantorovich problem with additional linear constraints,” Math. Notes, vol. 98, no. 5, 725–741 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. Beiglböck M. and Juillet N., “On a problem of optimal transport under marginal martingale constraints,” Ann. Probab., vol. 44, no. 1, 42–106 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghoussoub N., Kim Y.-H., and Lim T., “Structure of optimal martingale transport in general dimensions,” Ann. Probab., vol. 47, no. 1, 109–164 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  24. Backhoff J., Beiglböck M., Huesmann M., and Källblad S., “Martingale Benamou–Brenier: a probabilistic perspective,” Ann. Probab., vol. 48, no. 5, 2258–2289 (2020).

    MathSciNet  MATH  Google Scholar 

  25. Korman J. and McCann R. J., “Insights into capacity constrained optimal transport,” Proc. Natl. Acad. Sci. USA, vol. 110, 10064–10067 (2013).

    Article  Google Scholar 

  26. Korman J. and McCann R. J., “Optimal transportation with capacity constraints,” Trans. Amer. Math. Soc., vol. 367, no. 3, 1501–1521 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  27. Korman J., McCann R. J., and Seis C., “Dual potentials for capacity constrained optimal transport,” Calc. Var. Partial. Differ. Equ., vol. 54, no. 1, 573–584 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. Korman J., McCann R. J., and Seis C., “An elementary approach to linear programming duality with application to capacity constrained transport,” J. Convex Anal., vol. 22, no. 3, 797–808 (2015).

    MathSciNet  MATH  Google Scholar 

  29. Doledenok A. N., “On a Kantorovich problem with a density constraint,” Math. Notes, vol. 104, no. 1, 39–47 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  30. Bogachev V. I., Doledenok A. N., and Malofeev I. I., “The Kantorovich problem with density constraints,” Math. Notes, vol. 110, no. 6, 142–145 (2021).

    MathSciNet  MATH  Google Scholar 

  31. Dedecker J., Prieur C., and Raynaud De Fitte P., “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables,” in: Dependence in Probability and Statistics, Springer, New York (2006), 105–121 (Lect. Notes Stat.; Vol. 187).

  32. Zhang X., “Stochastic Monge–Kantorovich problem and its duality,” Stochastics, vol. 85, no. 1, 71–84 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuksin S., Nersesyan V., and Shirikyan A., “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise,” Geom. Funct. Anal. (GAFA), vol. 30, no. 1, 126–187 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  34. Bogachev V. I. and Malofeev I. I., “On the Kantorovich problem with a parameter,” Dokl. Math., vol. 100, no. 1, 349–353 (2019).

    Article  MATH  Google Scholar 

  35. Bogachev V. I. and Malofeev I. I., “Kantorovich problems and conditional measures depending on a parameter,” J. Math. Anal. Appl., vol. 486, no. 1, 1–30 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  36. Bogachev V. I. and Popova S. N., Optimal Transportation of Measures with a Parameter. arXiv: 2021.2111. 13014 [math.FA] (2021).

    Google Scholar 

  37. Bogachev V. I., Measure Theory. Vols. 1 and 2, Springer, Berlin (2007).

    Book  MATH  Google Scholar 

  38. Beiglböck M., Goldstern M., Maresch G., and Schachermayer W., “Optimal and Better Transport Plans,” J. Funct. Anal., vol. 256, no. 6, 1907–1927 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  39. Beiglböck M. and Schachermayer W., “Duality for Borel measurable cost functions,” Trans. Amer. Math. Soc., vol. 363, no. 8, 4203–4224 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  40. Levin V. L., “General Monge–Kantorovich problem and its applications in measure theory and mathematical economics,” in: Functional Analysis, Optimization, and Mathematical Economics. A Collection of Papers Dedicated to the Memory of L. V. Kantorovich (L. J. Leifman, ed.), Oxford Univ., New York (1990), 141–176.

  41. Ambrosio L. and Pratelli A., “Existence and stability results in the \( L^{1} \) theory of optimal transportation,” in: Optimal Transportation and Applications. (Martina Franca, 2001), Berlin, Springer (2003), 123–160 (Lecture Notes Math.; Vol. 1813).

  42. Clason C., Lorenz D. A., Mahler H., and Wirth B., “Entropic regularization of continuous optimal transport problems,” J. Math. Anal. Appl., vol. 494, no. 1, Paper No. 124432 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  43. Lorenz D. A., Manns P., and Meyer C., “Quadratically regularized optimal transport,” Appl. Math. Optim., vol. 83, no. 3, 1919–1949 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  44. Bogachev V. I., Wang F.-Y., and Shaposhnikov A. V., “Estimates for Kantorovich norms on manifolds,” Dokl. Math., vol. 92, no. 1, 494–499 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  45. Bogachev V. I., Wang F.-Y., and Shaposhnikov A. V., “On inequalities connecting the Sobolev and Kantorovich norms,” Dokl. Math., vol. 93, no. 3, 256–258 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  46. Bogachev V. I. and Shaposhnikov A. V., “Lower bounds for the Kantorovich distance,” Dokl. Math., vol. 91, no. 1, 91–93 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  47. Bogachev V. I., Shaposhnikov A. V., and Wang F.-Y., “Sobolev–Kantorovich inequalities under \( \operatorname{CD}(0,\infty) \) condition,” Commun. Contemp. Math. (2021). doi 10.1142/S0219199721500279

  48. Ledoux M., “Sobolev–Kantorovich inequalities,” Anal. Geom. Metr. Spaces, vol. 3, no. 1, 157–166 (2015).

    MathSciNet  MATH  Google Scholar 

  49. Cinti E. and Otto F., “Interpolation inequalities in pattern formation,” J. Funct. Anal., vol. 271, no. 11, 3348–3392 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  50. Steinerberger S., “On a Kantorovich–Rubinstein inequality,” J. Math. Anal. Appl., vol. 501, no. 2, Paper no. 125185 (2021).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This paper was supported by the Russian Foundation for Basic Research (Grant no. 20–01–00432) and the Moscow Center of Fundamental and Applied Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 1, pp. 42–57. https://doi.org/10.33048/smzh.2022.63.103

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I. Kantorovich Problems with a Parameter and Density Constraints. Sib Math J 63, 34–47 (2022). https://doi.org/10.1134/S0037446622010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622010037

Keywords

UDC

Navigation