Skip to main content
Log in

High-Performance Low-Vanadium V2O5/Al2O3 Catalysts for Selective Reduction of NOx: I. Catalytic Properties

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The study investigates the potential for promoting V2O5/Al2O3 catalysts for selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR). It was found that the activity of low-V2O5 (2–4 wt %) catalysts can be markedly enhanced (by a factor of 3–4) by their promotion with tungsten oxide. It was shown that a promoted V–W/Al2O3 catalyst that contains 4 wt % of V2O5 can achieve a NOx decomposition efficiency of 90% or even higher in the range of 360–500°C at a GHSV above 100,000 h–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lietti, L., Nova, I., and Forzatti, P., Top. Catal., 2000, vol. 11, pp. 111–122. https://doi.org/10.1023/A:1027217612947

    Article  Google Scholar 

  2. Sobalik, Z., Markvart, M., and Lapina, O.B., Catal. Lett., 1994, vol. 28, pp. 25–31. https://doi.org/10.1007/bf00812466

    Article  CAS  Google Scholar 

  3. Soh, B.-W., Nam, I.-S., and Lee, J.-B., Stud. Surf. Sci. Catal., 1999, vol. 126, pp. 389–396. https://doi.org/10.1016/S0167-2991(99)80490-X

    Article  CAS  Google Scholar 

  4. Lai, J.-K. and Wachs, I.E., ASC Catal., 2018, vol. 8, pp. 6537–6551. https://doi.org/10.1021/acscatal.8b01357

    Article  CAS  Google Scholar 

  5. Forzatti, P., Appl. Catal. A: General, 2001, vol. 222, pp. 221–236. https://doi.org/10.1016/S0926-860X(01)00832-8

    Article  CAS  Google Scholar 

  6. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans, Lyon. France, 2006, vol. 86.

  7. Chapman, D.M., Appl. Catal. A: General, 2011, vol. 392, pp. 143–150. https://doi.org/10.1016/j.apcata.2010.11.005

    Article  CAS  Google Scholar 

  8. Schildhauer, T.J., Elsener, M., Moser, J., Begsteiger, I., Chatterjee, D., Rusch, K., and Krocher, O., Emiss. Control Sci. Technol., 2015, vol. 1, pp. 292–297. https://doi.org/10.1007/s40825-015-0023-x

    Article  CAS  Google Scholar 

  9. Sanitary Rules and Norms of the Russian Federation, 1.2.3685-21.

  10. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control).

  11. Centeno, M.A., Carrizosa, I., and Odriozola, J.A., Appl. Catal. B: Environ., 1998, vol. 19, pp. 67–73. https://doi.org/10.1016/S0926-3373(98)00059-9

    Article  CAS  Google Scholar 

  12. Centeno, M.A., Malet, P., Carrizosa, I., and Odriozola, J.A., J. Phys. Chem. B, 2000, vol. 104, pp. 3310–3319. https://doi.org/10.1021/jp993084a

    Article  CAS  Google Scholar 

  13. Centero, M.A., Carrizosa, I., and Odriozola, J.A., J. Alloys Compd., 2001, vols. 323–324, pp. 597–600. https://doi.org/10.1016/S0925-8388(01)01186-0

    Article  Google Scholar 

  14. Koh, H.-L. and Park, H.-K., J. Ind. Eng. Chem., 2013, vol. 19, no. 1, pp. 73–79. https://doi.org/10.1016/j.jiec.2012.07.003

    Article  CAS  Google Scholar 

  15. Wang, C., Zuo, Y., and Yang, C.-I., Env. Eng. Sci., 2009, vol. 26, no. 9, pp. 1429–1434. https://doi.org/10.1089/ees.2009.0056

    Article  CAS  Google Scholar 

  16. Guo, F., Yu, J., Chu, M., and Xu, G., Catal. Sci. Technol., 2014, vol. 4, pp. 2147–2155. https://doi.org/10.1039/c4cy00098f

    Article  CAS  Google Scholar 

  17. Popova, N.M., Sokolova, L.A., Marchenko, E.A., and Bobrova, L.N., React. Kinet. Catal. Lett., 1998, vol. 65, no. 2, pp. 363–370. https://doi.org/10.1007/BF02475277

    Article  CAS  Google Scholar 

  18. Muzio, L.J., Quartucy, G.K., and Cichanowicz, J.E., Int. J. Environ Pollut., 2002, vol. 17, nos. 1–2, pp. 4–30. https://doi.org/10.1504/IJEP.2002.000655

    Article  CAS  Google Scholar 

  19. Xie, X., Peng, J., Zhao, S., Wang, L., Ge, R., Wu, S., May, Y., Zeng, K., and Sun, Z., Ind. Eng. Chem. Res., 2022, vol. 61, pp. 14382–14392. https://doi.org/10.1021/acs.iecr.2c02422

    Article  CAS  Google Scholar 

  20. Guo, L., Lu, J., Zhao, Y., Wang, C., Zhang, C., Tang, C., Dong, L., Kong, W., Li, Q., and Cao, P., Catal. Sci. Technol., 2021, vol. 11, pp. 3164–3175. https://doi.org/10.1039/d0cy02142c

    Article  CAS  Google Scholar 

  21. Heck, R.M., Farrauto, R.J., and Gulati, S.T., Catalytic Air Pollution Control: Commercial Technology, Hoboken, New Jersey, USA: John Wiley & Sons, 2009, 3rd ed.

  22. Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J., Handbook of Heterogeneous Catalysis, Weinheim, Germany: Wiley-VCH Verlag GmbH& Co. KGaA, 2008, 2nd ed.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Stakheev.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokarev, D.A., Baeva, G.N., Kazakov, A.V. et al. High-Performance Low-Vanadium V2O5/Al2O3 Catalysts for Selective Reduction of NOx: I. Catalytic Properties. Pet. Chem. 63, 310–316 (2023). https://doi.org/10.1134/S0965544123010085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123010085

Keywords:

Navigation