Skip to main content
Log in

Polarographic and Voltammetric Investigation of Heterocyclic Monoazo Compounds Azodicarboxylic Dimorpholide and 1,1'-Azodicarbonyl Dipiperidine

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviours of azodicarboxylic dimorpholide (ADM) and 1,1′-azodicarbonyl dipiperidine (ADP) have been investigated in Britton–Robinson (B–R) buffer solutions over a wide pH range (2.0–12.0) by means of some voltammetric and polarographic techniques. During the cathodic potential scan of ADM and ADP, a major signal for the reduction of –N=N– moiety was obtained. The effects of pH and scan rate on the cathodic signal were also studied. On the basis of voltammetric and polarographic data, an overall mechanism for the electrochemical reduction process of –N=N– moiety on both ADM and ADP molecules was postulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

REFERENCES

  1. Sarkar, S., Banerjee, A., Halder, U., Biswas, R., and Bandopadhyay, R., Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes, Water Conserv. Sci. Eng., 2017, vol. 2, p. 121. https://doi.org/10.1007/s41101-017-0031-5

    Article  Google Scholar 

  2. Guaratini, C.C.I., Fogg, A.G., and Zanoni, M.V.B., Studies of the voltammetric behavior and determination of diazo reactive dyes at mercury electrode, Electroanalysis, 2001, vol. 13, p. 1535. https://doi.org/10.1002/1521-4109(200112)13:18<1535::AID-ELAN1535>3.0.CO;2-H

    Article  CAS  Google Scholar 

  3. Abdallah, M., Alfakeer, M.M., Hasan, N.F., Alharbi, A.M., and Mabrouk, E.M., Polarographic performance of some azo derivatives derived from 2-amino-4-hydroxy pyridine and its inhibitory effect on C-steel corrosion in hydrochloric acid, Orient. J. Chem., 2019, vol. 35, p. 98. https://doi.org/10.13005/ojc/350111

    Article  CAS  Google Scholar 

  4. Bhaskar, V. and Ramachandraiah, A., Spectral, electrochemical and molecular modeling studies of sulfasalazine, World J. Pharm. Res., 2015, vol. 4, p. 1126.

    CAS  Google Scholar 

  5. Ravindranath, L.K., Ramadas, S.R., and Rao, S.B., Polarographic behaviour of arylazo pyrazoles, Electrochim. Acta, 1983, vol. 28, p. 601. https://doi.org/10.1016/0013-4686(83)85051-8

    Article  CAS  Google Scholar 

  6. Biçer, E. and Arat, C., A voltammetric study on the aqueous electrochemistry of acid red 1 (azophloxine), Croat. Chem. Acta, 2009, vol. 82, p. 583. https://hrcak. srce.hr/45435.

    Google Scholar 

  7. Maqbool, H., Ganesh, S.D., Chandra, U., Kumaraswamy, B.E., and Pai, V.K., Cyclic voltammetric studies of synthesized cardanol based azo dyes, Res. J. Chem. Sci., 2013, vol. 3, p. 44.

    CAS  Google Scholar 

  8. Ennouri, R., Panizza, M., Mhiri, T., and Elaoud, S.C., Electrochemical behavior of acid orange 7 by cyclic voltammetry in different solvents, Port. Electrochim. Acta, 2017, vol. 35, p. 269. https://doi.org/10.4152/pea.201705269

    Article  CAS  Google Scholar 

  9. Helmy, A.M.A., Fekri, A., and Shahba, M.M., Square wave voltammetric investigations on 2,2-dimethyl-1,3-dioxan-5-phenylazo-4,6-dione, Egypt. J. Basic Appl. Sci., 2016, vol. 3, p. 16. https://doi.org/10.1016/j.ejbas.2015.07.001

    Article  Google Scholar 

  10. Lipskikh, O.I., Korotkova, E.I., Dorozhko, E.V., Derina, K.V., and Voronova, O.A., Voltammetric determination of carmoisine in soft drinks, Inorg. Mater., 2017, vol. 53, p. 1427. https://doi.org/10.1134/S0020168517140114

    Article  CAS  Google Scholar 

  11. Aribam, N.G., Jain, R., and Halve, A.K., Synthesis and electrochemical studies of 4-{[(E)-{2-hydroxy-5-[(Z) substituted phenyldiazenyl] phenyl} methylidene] amino} benzenesulphonamides, J. Sci. Ind. Res., 2014, vol. 73, p. 474.

    CAS  Google Scholar 

  12. El-Attar, M.A., Ismail, I.M., and Ghoneim, M.M., Synthesis, electrochemical, spectrophotometric and potentiometric studies of two azo-compounds derived from 4-amino-2-methylquinoline in ethanolic‑aqueous buffered solutions, J. Braz. Chem. Soc., 2012, vol. 23, p. 1523. https://doi.org/10.1590/S0103-50532012005000013

    Article  CAS  Google Scholar 

  13. Tvorynska, S., Josypčuk, B., Barek, J., and Dubenska, L., Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and allura red AC on amalgam electrodes, Food Anal. Methods, 2019, vol. 12, p. 409. https://doi.org/10.1007/s12161-018-1372-1

    Article  Google Scholar 

  14. Mohammed, H.J., New cyclic voltammetry of 3-(4-n-pyridine-2-yl benzene sulfonamide azo)-1-nitroso naphthol and the use of it for enhancement of cobalt oxide nano particles, Nano Biomed. Eng., 2017, vol. 9, p. 135. https://doi.org/10.5101/NBE.V9I2.P135-142

    Article  CAS  Google Scholar 

  15. Nagaraju, V., Sreenivasulu, R., Doraswamy, K., and Ramana, P.V., Electrochemical behavior of N'-(2-hydroxybenzoyl)-3,5-dimethyl-4-(4'-substituted arylazo)pyrazoles, Res. J. Pharm., Biol. Chem. Sci., 2010, vol. 1, p. 51.

    CAS  Google Scholar 

  16. Zainudin, N.S., Yaacob, M.H., and Md Muslim., N.Z., Voltammetric determination of reactive black 5 (RB5) in waste water samples from the batik industry, Malays. J. Anal. Sci., 2016, vol. 20, p. 1254. https://doi.org/10.17576/MJAS-2016-2006-04

    Article  Google Scholar 

  17. Al-Owais, A. and El-Hallag, I.S., Investigation of the electrode pathway of quinoline azo dye compound via convolutive voltammetry and digital simulation, J. New Mater. Electrochem. Syst., 2016, vol. 19, p. 91. https://doi.org/10.14447/jnmes.v19i2.335

    Article  CAS  Google Scholar 

  18. Mabrouk, E.M., Felaly, R.N., and El-Mossalamy, E.H., Distinctive routs: electrochemical and spectrophotometric studies and dissociation constants determination of some aminopyridine azo-dye derivatives in aqueous media, Int. J. Electrochem. Sci., 2016, vol. 11, p. 4892. https://doi.org/10.20964/2016.06.49

    Article  CAS  Google Scholar 

  19. Mabrouk, E.M., Al-Omary, Kh.A., Al-Omary, A.S., and El-Mossalamy, E.H., Electrochemical and spectra studies of some sulfa drug azodyes and their metal complexes in aqueous solution, J. Adv. Chem., 2017, vol. 14, p. 6021. https://doi.org/10.24297/jac.v14i1.6316

    Article  Google Scholar 

  20. Çakır, O. and Biçer, E., A polarographic, voltammetric and coulometric study of phenazopyridine hydrochloride, Port. Electrochim. Acta, 1998, vol. 16, p. 11.

    Google Scholar 

  21. Abdel-Hamid, R., Rabia, M.K.M., and Abdalla, N.A., Electrochemical reduction of 4-(3-pyridylazo)-3-amino-2-pyrazolin-5-one, Pak. J. Sci. Ind. Res., 2005, vol. 48, p. 371.

    CAS  Google Scholar 

  22. Omanović, D. and Branica, M., Automation of voltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421. https://hrcak.srce.hr/132355.

    Google Scholar 

  23. Larkins, J.T., Evans, H., and Nicholson, J.M., Lineer free energy correlation of the half-wave potentials of some substitued N-aroyl-N'-phenyl diimides and N-benzoyl-N'-aryl diimides, Tetrahedron Lett., 1970, vol. 11, p. 4159. https://doi.org/10.1016/S0040-4039(01)98692-7

    Article  Google Scholar 

  24. Zuman, P. and Perrin, C.L., Physical organic polarography, in Organic Polarography, Zuman, P. and Perrin, C.L., Eds., New York: John Wiley and Sons, 1969, p. 186.

    Google Scholar 

  25. Malik, W.U., Goyal, R.N., and Jain, R., Polarographic reduction of some arylazopyrazoles in N,N'-dimethylformamide, J. Electroanal. Chem. Interfacial Electrochem., 1978, vol. 87, p. 129. https://doi.org/10.1016/S0022-0728(78)80387-8

    Article  CAS  Google Scholar 

  26. Ozkan, S.A., Kauffmann, J.-M., and Zuman, P., Polarography in studies of pharmaceuticals, in Electroanalysis in Biomedical and Pharmaceutical Sciences: Voltammetry, Amperometry, Biosensors, Applications, Scholz, F., Ed., Heidelberg: Springer-Verlag, 2015, chapter 3, p. 23. https://doi.org/10.1007/978-3-662-47138-8_2

  27. Long, G.G., The basic factors of anodic polarography, PhD Thesis, Univ. Florida, 1957.

  28. Khalafi, L. and Rafiee, M., Cyclic voltammetry, in Encyclopedia of Physical Organic Chemistry, Wang, Z., Wille, U., and Juaristi, E., Eds., New Jersey: John Wiley & Sons, 2017, vol. 5, part 4, p. 3439.

    Google Scholar 

  29. Isaac, B.J., Two new instruments for analytical chemistry: A. Constant potential pulse polarography (CPPP) and differential CPPP (DCPPP) for determination of metals in the presence of oxygen in flowing systems; B. Versatile laser-based analytical instrument for detection of jet-cooled molecular species, PhD Thesis, Iowa State Univ., 1989.

  30. Hatem, O.A., Suhail, F.S.A., and Juda, A.M., The pH effect on polarographic potential wave of carvediolol, atenolol and propranolol, J. Chem. Pharm. Sci., 2016, vol. 9, p. 2487.

    CAS  Google Scholar 

  31. Taşkoparan Yilmaz, Ü., Kekillioglu, A., and Mert, R., Determination of gallic acid by differential pulse polarography: application to fruit juices, J. Anal. Chem., 2013, vol. 68, p. 1064. https://doi.org/10.1134/S1061934813120113

    Article  CAS  Google Scholar 

  32. Nimal, R., Electrochemical and spectroscopic characterization of biologically important Schiff bases, SN Appl. Sci., 2020, vol. 2, Article number: 2174. https://doi.org/10.1007/s42452-020-03652-8

  33. van Leeuwen, H.P., Buffle, J., and Lovric, M., Reactant adsorption in analytical pulse voltammetry: methodology and recommendations, Pure Appl. Chem., 1992, vol. 64, p. 1015. https://doi.org/10.1351/pac199264071015

    Article  CAS  Google Scholar 

  34. Khodadadian, M., Jalili, R., Bahrami, M.T., and Bahramia, G., Adsorptive behavior and voltammetric determination of hydralazine hydrochloride at a glassy carbon electrode modified with multiwalled carbon nanotubes, Iran. J. Pharm. Res., 2017, vol. 16, p. 1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: John Wiley and Sons, 2001, pp. 97, 236, 598, 599.

    Google Scholar 

  36. Greef, D., Peat, R., Peter, L.M., Pletcher, D., and Robinson, J., Instrumental Methods in Electrochemistry, New York: Ellis Horwood, 1990, chapter 6, pp. 178–228.

    Google Scholar 

  37. Sandford, C., Edwards, M.A., Klunder, K.J., Hickey, D.P., Li, M., Barman, K., Sigman, M.S., White, H.S., and Minteer, S.D., A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms, Chem. Sci., 2019, vol. 10, p. 6404. https://doi.org/10.1039/c9sc01545k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buriez, O., Nédélec, J.-Y., and Périchon, J., Stability and reactivity of electrogenerated cobalt(I) towards aryl halides in the presence of additives such as vinyl acetate or methyl vinyl ketone: application to the electrosynthesis of arylzinc compounds, J. Electroanal. Chem., 2001, vol. 506, p. 162. https://doi.org/10.1016/S0022-0728(01)00492-2

    Article  CAS  Google Scholar 

  39. Bond, A.M., Modern Polarographic Methods in Analytical Chemistry, New York: Marcel Dekker, 1980, p. 190.

    Google Scholar 

  40. Marken, F., Neudeck, A., and Bond, A.M., Cyclic voltammetry, in Electroanalytical Methods: Guide to Experiments and Applications, Scholz, F., Ed., 2nd, ed., Heidelberg: Springer-Verlag, 2010, chapter II.1, p. 57. https://doi.org/10.1007/978-3-642-02915-8_4

  41. La-Scalea, M.A., Serrano, S.H.P., and Gutz, I.G.R., Voltammetric behaviour of metronidazole at mercury electrodes, J. Braz. Chem. Soc., 1999, vol. 10, p. 127. https://doi.org/10.1590/S0103-50531999000200010

    Article  CAS  Google Scholar 

  42. Kumari, M. and Sharma, D.K., Electrochemical behaviour of (2,4-difluoro-phenyl)-(2-phenyl-1h-quinolin-4-ylidene)-amine in aprotic media, J. Korean Chem. Soc., 2011, vol. 55, p. 50. https://doi.org/10.5012/jkcs.2011.55.1.050

    Article  CAS  Google Scholar 

  43. Nicholson, R.S. and Shain, I., Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706. https://doi.org/10.1021/ac60210a007

    Article  CAS  Google Scholar 

  44. Özdemir Tanju, N., Tek azo gruplu 1,1'-(azodikarbonil) dipiperidin, azodikarboksilik dimorfolit ve 4-(4-dietilaminofenilazo) 1-(4 nitrobenzil) piridinyum bromür’ün sulu ve susuz ortamlardaki elektrokimyasal davranışlarının incelenmesi, PhD. Thesis, Ondokuz Mayıs Univ., 2017.

  45. Yasin, S.A., Electrochemical studies and thermodynamic parameters of citrazinic acid azo dye and its nitro derivatives in DMF-aqueous solutions, Port. Electrochim. Acta, 2006, vol. 24, p. 23.

    Article  CAS  Google Scholar 

  46. Zuman, P., The Elucidation of Organic Electrode Processes, New York: Acad. Press, 1969, p. 28.

    Google Scholar 

  47. Reddy, C.N., Prasad, P.R., and Sreedhar, N.Y., Electrochemical analysis of antichemotherapeutic drug zanosar in pharmaceutical and biological samples by differential pulse polarography, J. Anal. Methods Chem., 2013, vol. 2013, Article ID 420761.https://doi.org/10.1155/2013/420761

  48. Malagutti, A.R. and Mazo, L.H., Determination of ranitidine in drugs using a mercury coated platinum ultramicroelectrode and hanging mercury dropping electrode, J. Braz. Chem. Soc., 2003, vol. 14, p. 274. https://doi.org/10.1590/S0103-50532003000200015

    Article  CAS  Google Scholar 

  49. Meites, L., Polarographic Techniques, 2nd ed., New York: Intersci. Publ., 1965, chapter 4.

    Google Scholar 

  50. Çakır, S., Biçer, E., Odabaşoğlu, M., and Albayrak, Ç., Electrochemical and spectroscopic study of 4-(phenyldiazenyl)-2-{[tris-(hydroxymethyl)methyl]aminomethylene}- cyclohexa -3,5-dien-1(2H)-one. Mechanism of the azo and imine electroreduction, J. Braz. Chem. Soc., 2005, vol. 16, p. 711. https://doi.org/10.1590/S0103-50532005000500005

    Article  Google Scholar 

  51. Malik, W.U. and Goyal, R.N., Polarographic reduction of some potential antidiabetic compounds with more than one reduction site, Talanta, 1976, vol. 23, p. 705. https://doi.org/10.1016/0039-9140(76)80066-5

    Article  CAS  PubMed  Google Scholar 

  52. El-Sayed, R., Mohamed, A.A., and Mabrouk, E.M., DC-polarography and cyclic voltammetric studies of some mono and bis azo compounds derived from aromatic primary amines and 2,3-dihydroxynaphthalene in aqueous solutions, Mater. Sci. Res. India, 2010, vol. 7, p. 339. https://doi.org/10.13005/msri/070203

    Article  CAS  Google Scholar 

  53. Gooding, J.J., Compton, R.G., Brennan, C.M., and Atherton, J.H., The mechanism of the electro-reduction of some azo dyes, Electroanalysis, 1996, vol. 8, p. 519. https://doi.org/10.1002/elan.1140080604

    Article  CAS  Google Scholar 

  54. Inzelt, G., Kinetics of electrochemical reactions, in Electroanalytical Methods: Guide to Experiments and Applications, Scholz, F., Ed., 2nd ed., Heidelberg: Springer-Verlag, 2010, chapter I.3, p. 33. https://doi.org/10.1007/978-3-642-02915-8_3

Download references

ACKNOWLEDGMENTS

This manuscript was produced from PhD Thesis of the first author and supervised by the second author. Also, this research work was presented in part and in poster form at 10th International Electrochemistry Meeting in Konya, September 4–8, 2013, Abstract Book, pp. 74, 75, Konya, Turkey.

Funding

This study was financially supported by the Scientific Research Foundation of Ondokuz Mayıs University, Turkey (project number: PYO.FEN.1904.12.016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Biçer.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neslihan Özdemir Tanju, Ender Biçer Polarographic and Voltammetric Investigation of Heterocyclic Monoazo Compounds Azodicarboxylic Dimorpholide and 1,1'-Azodicarbonyl Dipiperidine. Russ J Electrochem 59, 79–91 (2023). https://doi.org/10.1134/S102319352301010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352301010X

Keywords:

Navigation