Skip to main content
Log in

Multiply Transitive Lie Group of Transformations as a Physical Structure

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

We establish a connection between physical structures and Lie groups and prove that each physical structure of rank \((n+1,2)\), \(n\in \mathbb {N} \), on a smooth manifold is isotopic to an almost \(n \)-transitive Lie group of transformations. We also prove that each almost \(n\)-transitive Lie group of transformations is isotopic to a physical structure of rank \((n+1,2) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. D. Belousov, Foundations of the Theory of Quasi-Groups and Loops (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  2. A. N. Borodin, “A heap and physical structure of rank \((2,2) \),” in: G. G. Mikhaĭlichenko, The Mathematical Basics and Results of the Theory of Physical Structures, 281 (Gorno-Altaisk. Gos. Univ., Gorno-Altaisk, 2016) [in Russian].

  3. V. V. Gorbatsevich and A. L. Onishchik, “Lie transformation groups,” Itogi Nauki Tekhn., Ser. Sovrem. Probl. Mat., Fundam. Napravl. 20), 103 (1988) [Encycl. Math. Sci. 20, 95 (1993)].

    Google Scholar 

  4. V. K. Ionin, “On the definition of physical structures,” Trudy Inst. Mat. 21, 42 (1992) [Siberian Adv. Math. 2:4, 73 (1992)].

    MathSciNet  MATH  Google Scholar 

  5. L. A. Kaluzhnin, “Transitive group,” in Mathematical Encyclopedia. Vol. 5, 411 (Sov. Entsiklopediya, Moscow, 1985) [in Russian].

  6. V. A. Kyrov, “Quasigroup properties of affine groups,” Vestn. Tomsk Gos. Univ., Ser. Mat. Kibern. Inform., Suppl. 23, 37 (2007) [in Russian].

  7. V. A. Kyrov, “Affine geometry as a physical structure,” Zh. Sib. Fed. Univ., Math. Phys. 1, 460 (2008) [in Russian].

  8. V. A. Kyrov, “Projective geometry and the theory of physical structures,” Izv. Vyssh. Uchebn. Zaved., Mat., no. 11, 48 (2008) [Russ. Math. 52, 42 (2008)].

    Article  MathSciNet  Google Scholar 

  9. V. A. Kyrov, “Phenomenologically symmetric local Lie groups of transformations of the space \(R^s\),” Izv. Vyssh. Uchebn. Zaved., Mat., no. 7, 10 (2009) [Russ. Math. 53, 7 (2009)].

    Article  MathSciNet  Google Scholar 

  10. V. A. Kyrov, “Projective geometry and phenomenological symmetry,” Zh. Sib. Fed. Univ., Math. Phys. 5, 82 (2012) [in Russian].

  11. V. A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of rank \( (N,2)\) into phenomenologically symmetric geometries of two sets of rank \((N+1,2)\),” Vestn. Udmurt. Univ., Mat. Mekh. Komp. Nauki 26, 312 (2016) [in Russian].

  12. V. A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of rank \( (N,M)\) into phenomenologically symmetric geometries of two sets of rank \((N+1,M)\),” Vestn. Udmurt. Univ., Mat. Mekh. Komp. Nauki 27, 42 (2017) [in Russian].

  13. V. A. Kyrov, “Embedding of two-dimensional phenomenologically symmetric geometries,” Vestn. Tomsk Gos. Univ., Ser. Mat. Mekh., no. 56, 5 (2018) [in Russian].

  14. V. A. Kyrov, “Commutative hypercomplex numbers and the geometry of two sets,” Zh. Sib. Fed. Univ., Math. Phys. 13, 373 (2020).

    Article  MathSciNet  Google Scholar 

  15. V. A. Kyrov, “Hypercomplex numbers in some geometries of two sets. II,” Izv. Vyssh. Uchebn. Zaved., Mat., 39 (2020) [Russ. Math. 64, 31 (2020)].

    Article  MathSciNet  Google Scholar 

  16. V. A. Kyrov and G. G. Mikhaĭlichenko, “Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank \((2,2) \) into two-dimensional phenomenologically symmetric geometries of two sets of rank \((3,2)\),” Vestn. Udmurt. Univ., Mat. Mekh. Komp. Nauki 28, 305 (2018) [in Russian].

  17. V. A. Kyrov and R. M. Muradov, “ Transformation groups and their invariants,” Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 9, 54 (2009) [in Russian].

  18. G. G. Mikhaĭlichenko, “Phenomenological and group symmetry in the geometry of two sets (theory of physical structures),” Dokl. Akad. Nauk SSSR 284, 39 (1985) [Sov. Math., Dokl. 32, 371 (1985)].

    MATH  Google Scholar 

  19. G. G. Mikhaĭlichenko, The Mathematical Basics and Results of the Theory of Physical Structures (Gorno-Altaisk. Gos. Univ., Gorno-Altaisk, 2016) [in Russian].

    Google Scholar 

  20. G. G. Mikhaĭlichenko and V. A. Kyrov, “Hypercomplex numbers in some geometries of two sets. I,” Izv. Vyssh. Uchebn. Zaved., Mat., 19 (2017) [Russ. Math. 61:7, 15 (2017)].

    Article  MathSciNet  Google Scholar 

  21. M. M. Postnikov, Lie Groups and Lie Algebras (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  22. A. A. Simonov, “On generalized sharply \(n \)-transitive groups,” Izv. Ross. Akad. Nauk, Ser. Mat. 78, 153 (2014) [Izv. Math. 78, 1207 (2014)].

    Article  MathSciNet  Google Scholar 

  23. A. A. Simonov, “Pseudomatrix groups and physical structures,” Sib. Matem. Zh. 56, 211 (2015) [Siberian Math. J. 56, 177 (2015)].

    Article  MathSciNet  Google Scholar 

  24. J. Tits, “Sur les groupes doublement transitif continus,” Comment. Math. Helv. 26, 203 (1952) [in French].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kyrov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyrov, V.A. Multiply Transitive Lie Group of Transformations as a Physical Structure. Sib. Adv. Math. 32, 129–144 (2022). https://doi.org/10.1134/S1055134422020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1055134422020067

Keywords

Navigation