Skip to main content
Log in

Galaxy Rotation Parameters from OB2 Stars with Proper Motions and Parallaxes from the Gaia EDR3 Catalog

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We have analyzed the kinematics of OB2 stars with proper motions and parallaxes selected by Xu et al. from the Gaia EDR3 catalog. The relative parallax errors for all the stars in this sample do not exceed 10%. Based on a sample of 9750 stars, the group velocity components \({{(U,V,W)}_{ \odot }} = \) (7.21, 7.46, 8.52) ± (0.13, 0.20, 0.10) km/s were obtained and the parameters of the angular velocity of rotation of the Galaxy: \({{\Omega }_{0}} = 29.712 \pm 0.062\) km/s/kpc, \(\Omega _{0}^{'} = - 4.014 \pm 0.018\) km/s/kpc2, and \(\Omega _{0}^{{''}} = 0.674 \pm 0.009\) km/s/kpc3. The circular velocity of rotation of the solar neighborhood around the center of the Galaxy is \({{V}_{0}} = 240.7 \pm 3.0\) km/s for the assumed distance of the Sun to the galactic center \({{R}_{0}} = 8.1 \pm 0.1\) kpc. It is shown that the influence of the systematic correction to the trigonometric parallaxes of the Gaia EDR3 catalog with the value \(\Delta \pi = - 0.040\) mas does not exceed the \(\sim {\kern 1pt} 1\sigma \) level of the errors of the sought-for kinematic parameters of the model. Based on the proper motions of OB stars, the following variances of the residual velocities were found: \(({{\sigma }_{1}},{{\sigma }_{2}},{{\sigma }_{3}}) = (11.79,9.66,7.21) \pm (0.06,0.05,0.04)\) km/s. It is shown that the first axis of this ellipsoid slightly deviates from the direction to the center of the Galaxy \({{L}_{1}} = 12.4^\circ \pm 0.1^\circ \), and the third axis is oriented almost exactly to the north pole of the Galaxy, \({{B}_{3}} = 83.7^\circ \pm 0.1^\circ \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. mas is milliarcsecond.

  2. http://simbad.u-strasbg.fr/simbad/

REFERENCES

  1. A. E. Piskunov, N. V. Kharchenko, S. Röser, E. Schilbach, and R.-D. Scholz, Astron. Astrophys. 445, 545 (2006).

    Article  ADS  Google Scholar 

  2. P. T. de Zeeuw, R. Hoogerwerf, and J. H. J. de Bruijne, Astron. J. 117, 354 (1999).

    Article  ADS  Google Scholar 

  3. A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Astron. Lett. 27, 58 (2001).

    Article  ADS  Google Scholar 

  4. A. M. Mel’nik and A. K. Dambis, Mon. Not. R. Astron. Soc. 472, 3887 (2017).

    Article  ADS  Google Scholar 

  5. J. A. Frogel and R. Stothers, Astron. J. 82, 890 (1977).

    Article  ADS  Google Scholar 

  6. J. Torra, D. Fernández, and F. Figueras, Astron. Astrophys. 359, 82 (2000).

    ADS  Google Scholar 

  7. Y. Xu, L.G. Hou, S. Bian, C. J. Hao, D. J. Liu, J. J. Li, and Y. J. Li, Astron. Astrophys. 645, L8 (2021).

    Article  ADS  Google Scholar 

  8. A. Blaauw, Bull. Astron. Inst. Netherland 15, 265 (1961).

    ADS  Google Scholar 

  9. R. Hoogerwerf, J. H. J. de Bruijne, and P. T. de Zeeuw, Astrophys. J. 544, L133 (2000).

    Article  ADS  Google Scholar 

  10. N. Tetzlaff, R. Neuhäuser, and M. M. Hohle, Mon. Not. R. Astron. Soc. 410, 190 (2011).

    Article  ADS  Google Scholar 

  11. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 47, 224 (2021).

    Article  ADS  Google Scholar 

  12. M. Mohr-Smith, J. E. Drew, R. Napiwotzki, S. Simon-Diaz, et al., Mon. Not. R. Astron. Soc. 465, 1807 (2017).

    Article  ADS  Google Scholar 

  13. B.-Q. Chen, Y. Huang, L.-G. Hou, H. Tian, et al., Mon. Not. R. Astron. Soc. 487, 1400 (2019).

    Article  ADS  Google Scholar 

  14. J. M. Shull and C. W. Danforth, Astrophys. J. 882, 180 (2019).

    Article  ADS  Google Scholar 

  15. R. Drimmel, R. L. Smart, and M. G. Lattanzi, Astron. Astrophys. 354, 67 (2000).

    ADS  Google Scholar 

  16. D. Russeil, Astron. Astrophys. 397, 133 (2003).

    Article  ADS  Google Scholar 

  17. Y. M. Georgelin and Y. P. Georgelin, Astron. Astrophys. 49, 57 (1976).

    ADS  Google Scholar 

  18. D. Fernández, F. Figueras, and J. Torra, Astron. Astrophys. 372, 833 (2001).

    Article  ADS  Google Scholar 

  19. Y. Xu, S. B. Bian, M. J. Reid, J. J. Li, et al., Astron. Astrophys. 616, L15 (2018).

    Article  ADS  Google Scholar 

  20. J. Byl and M. W. Ovenden, Astrophys. J. 225, 496 (1978).

    Article  ADS  Google Scholar 

  21. M. Miyamoto and Z. Zhu, Astron. J. 115, 1483 (1998).

    Article  ADS  Google Scholar 

  22. M. Uemura, H. Ohashi, T. Hayakawa, E. Ishida, T. Kato, and R. Hirata, Publ. Astron. Soc. Jpn. 52, 143 (2000).

    Article  ADS  Google Scholar 

  23. R. L. Branham, Astrophys. J. 570, 190 (2002).

    Article  ADS  Google Scholar 

  24. R. L. Branham, Mon. Not. R. Astron. Soc. 370, 1393 (2006).

    Article  ADS  Google Scholar 

  25. M. V. Zabolotskikh, A. S. Rastorguev, and A. K. Dambis, Astron. Lett. 28, 454 (2002).

    Article  ADS  Google Scholar 

  26. M. E. Popova and A. V. Loktin, Astron. Lett. 31, 663 (2005).

    Article  ADS  Google Scholar 

  27. Z. Zhu, Chin. J. Astron. Astrophys. 6, 363 (2006).

    Article  ADS  Google Scholar 

  28. A. M. Mel’nik and A. K. Dambis, Mon. Not. R. Astron. Soc. 400, 518 (2009).

    Article  ADS  Google Scholar 

  29. A. M. Melnik and A. K. Dambis, Astrophys. Space Sci. 365, 112 (2020).

    Article  ADS  Google Scholar 

  30. G. A. Gontcharov, Astron. Lett. 38, 694 (2012).

    Article  ADS  Google Scholar 

  31. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 44, 676 (2018).

    Article  ADS  Google Scholar 

  32. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45, 331 (2019).

    Article  ADS  Google Scholar 

  33. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, et al., Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  34. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys. 649, A1 (2021).

    Article  Google Scholar 

  35. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  36. V. V. Bobylev and A. T. Bajkova, Astron. Rep. 65, 498 (2021).

    Article  ADS  Google Scholar 

  37. B. A. Skiff, VizieR Online Data Catalog, B/mk (2014).

  38. L. Lindegren, U. Bastian, M. Biermann, A. Bombrun, et al., Astron. Astrophys. 616, A2 (2021).

    Article  Google Scholar 

  39. F. Ren, X. Chen, H. Zhang, R. de Grijs, L. Deng, and Y. Huang, Astrophys. J. Lett. 911, L20 (2021).

    Article  ADS  Google Scholar 

  40. M. A. T. Groenewegen, Astron. Astrophys. 654, A20 (2021).

    Article  ADS  Google Scholar 

  41. J. C. Zinn, Astron. J. 161, 214 (2021).

    Article  ADS  Google Scholar 

  42. Y. Huang, H. Yuan, T. Beers, and H. Zhang, Astrophys. J. Lett. 910, L5 (2021).

    Article  ADS  Google Scholar 

  43. J. Maiz Apellániz; arXiv: 2110.01475 [astro-ph.IM] (2021).

  44. L. Lindegren, J. Hernandez, A. Bombrun, S. Klioner, et al., Astron. Astrophys. 616, A2 (2018).

    Article  Google Scholar 

  45. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 437, 1549 (2014).

    Article  ADS  Google Scholar 

  46. T. Cantat-Gaudin, F. Anders, A. Castro-Ginard, C. Jordi, et al., Astron. Astrophys. 640, A1 (2020).

    Article  Google Scholar 

  47. R. Schönrich, J. J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  48. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 441, 142 (2014).

    Article  ADS  Google Scholar 

  49. P. Mróz, A. Udalski, D. M. Skowron, J. Skowron, et al., Astrophys. J. 870, L10 (2019).

    Article  ADS  Google Scholar 

  50. I. Ablimit, G. Zhao, C. Flynn, and S. A. Bird, Astrophys. J. 895, L12 (2020).

    Article  ADS  Google Scholar 

  51. V. V. Bobylev, A. T. Bajkova, A. S. Rastorguev, and M. V. Zabolotskikh, Mon. Not. R. Astron. Soc. 502, 4377 (2021).

    Article  ADS  Google Scholar 

  52. A. S. Rastorguev, M. V. Zabolotskikh, A. K. Dambis, A. K. Dambis, A. T. Bajkova, and V. V. Bobylev, Astrophys. Bull. 72, 122 (2017).

    Article  ADS  Google Scholar 

  53. M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, et al., Astrophys. J. 885, 131 (2019).

    Article  ADS  Google Scholar 

  54. F. Mignard, Astron. Astrophys. 354, 522 (2000).

    ADS  Google Scholar 

  55. R. P. Olling and W. Dehnen, Astrophys. J. 599, 275 (2003).

    Article  ADS  Google Scholar 

  56. J. Bovy, Mon. Not. R. Astron. Soc. 468, L63 (2017).

    Article  ADS  Google Scholar 

  57. C. Li, G. Zhao, and C. Yang, Astrophys. J. 872, 205 (2019).

    Article  ADS  Google Scholar 

  58. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys. 595, A2 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for the valuable comments, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Bobylev or A. T. Bajkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, V.V., Bajkova, A.T. Galaxy Rotation Parameters from OB2 Stars with Proper Motions and Parallaxes from the Gaia EDR3 Catalog. Astron. Rep. 66, 269–277 (2022). https://doi.org/10.1134/S1063772922040011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922040011

Keywords:

Navigation