Skip to main content
Log in

Parameters of the Galactic Spiral Density Wave from Masers with Parallax Errors Less Than 10\(\boldsymbol{\%}\)

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have studied the kinematics of Galactic masers and radio stars with measured VLBI trigonometric parallaxes and proper motions. We have considered masers with relative trigonometric parallax errors less than 10\({\%}\) and determined the Galactic rotation parameters from them. In particular, the linear rotation velocity of the Galaxy at the solar distance \(R_{0}\) has been found to be \(244.4\pm 4.3\) km s\({}^{-1}\) (for the adopted \(R_{0}=8.1\pm 0.1\) kpc). We have performed a joint and separate spectral analysis of the radial, residual tangential, and vertical maser velocities. For example, from the vertical maser velocities we have estimated the velocity perturbation amplitude \(f_{W}=5.2\pm 1.5\) km s\({}^{-1}\) with the wavelength \(\lambda_{W}=2.6\pm 0.7\) kpc, arguing for the influence of the spiral density wave on the vertical stellar velocities. Based on 104 masers within 3 kpc of the Sun, as a result of the joint solution, we have estimated the radial, \(f_{R}=6.7\pm 1.1\) km s\({}^{-1}\), and tangential, \(f_{\theta}=2.6\pm 1.2\) km s\({}^{-1}\), velocity perturbations, the perturbation wavelength \(\lambda=2.1\pm 0.3\) kpc, and the Sun’s phase in the Galactic spiral density wave \(\chi_{\odot}={-}148^{\circ}\pm 15^{\circ}\). We have confirmed the presence of the Radcliffe wave in the spatial distribution of masers and radio stars belonging to the Local Arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://bessel.vlbi-astrometry.org

  2. http://veraserver.mtk.nao.ac.jp

REFERENCES

  1. R. Abuter, A. Amorim, N. Bauböck, et al. (GRAVITY Collab.), Astron. Astrophys. 625, L10 (2019).

    ADS  Google Scholar 

  2. R. Abuter, A. Amorim, M. Bauböck, et al. (GRAVITY Collab.), Astron. Astrophys. 647, A59 (2021).

    Google Scholar 

  3. J. Alves, C. Zucker, A. A. Goodman, et al., Nature (London, U.K.) 578, 237 (2020).

    Article  ADS  Google Scholar 

  4. T. Antoja, A. Helmi, M. Romero-Gomez, et al., Nature (London, U.K.) 561, 360 (2018).

    Article  ADS  Google Scholar 

  5. A. T. Bajkova and V. V. Bobylev, Astron. Lett. 38, 549 (2012).

    Article  ADS  Google Scholar 

  6. L. N. Berdnikov, A. K. Dambis, and O. V. Vozyakova, Astron. Astrophys. Suppl. 143, 211 (2000).

    ADS  Google Scholar 

  7. S. B. Bian, Y. Xu, J. J. Li, Y. W. Wu, B. Zhang, X. Chen, Y. J. Li, Z. H. Lin, et al., Astron. J. 163, 54 (2022).

    Article  ADS  Google Scholar 

  8. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 408, 1788 (2010).

    Article  ADS  Google Scholar 

  9. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 437, 1549 (2014).

    Article  ADS  Google Scholar 

  10. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 447, L50 (2015).

    Article  ADS  Google Scholar 

  11. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 44, 676 (2018).

    Article  ADS  Google Scholar 

  12. V. V. Bobylev and A. T. Bajkova, Astron. Rep. 65, 498 (2021).

    Article  ADS  Google Scholar 

  13. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 48 (2022, in press).

  14. V. V. Bobylev, A. T. Bajkova, and A. S. Stepanishchev, Astron. Lett. 34, 515 (2008).

    Article  ADS  Google Scholar 

  15. V. V. Bobylev, O. I. Krisanova, and A. T. Bajkova, Astron. Lett. 46, 439 (2020).

    Article  ADS  Google Scholar 

  16. A. G. A. Brown, A. Vallenari, T. Prusti, et al. (Gaia Collab.), Astron. Astrophys. 649, 1 (2021).

    Google Scholar 

  17. J. Byl and M. W. Ovenden, Astrophys. J. 225, 496 (1978).

    Article  ADS  Google Scholar 

  18. P. A. B. Galli, L. Loinard, G. N. Ortiz-Léon, M. Kounkel, S. A. Dzib, A. J. Mioduszewski, L. F. Rodriguez, L. Hartmann, et al., Astrophys. J. 859, 33 (2018).

    Article  ADS  Google Scholar 

  19. T. Hirota, T. Nagayama, M. Honma, Y. Adachi, R. A. Burns, J. O. Chibueze, Y. K. Choi, K. Hachisuka, et al. (VERA Collab.), Publ. Astron. Soc. Jpn. 70, 51 (2020).

    Google Scholar 

  20. M. Honma, T. Nagayama, K. Ando, T. Bushimata, Y. K. Choi, T. Handa, T. Hirota, H. Imai, et al., Publ. Astron. Soc. Jpn. 64, 136 (2012).

    Article  ADS  Google Scholar 

  21. K. Immer, J. Li, L. H. Quiroga Nuñez, M. J. Reid, B. Zhang, L. Moscadelli, and K. L. J. Rygl, Astron. Astrophys. 632, A123 (2019).

    Article  ADS  Google Scholar 

  22. C. C. Lin and F. H. Shu, Astrophys. J. 140, 646 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. V. Loktin and M. E. Popova, Astrophys. Bull. 74, 270 (2019).

    Article  ADS  Google Scholar 

  24. M. Lóopez-Corredoira, H. Abedi, F. Garzón, and F. Figueras, Astron. Astrophys. 572, A101 (2014).

    Article  ADS  Google Scholar 

  25. T. E. Lutz and D. H. Kelker, Publ. Astron. Soc. Pacif. 85, 573 (1973).

    Article  ADS  Google Scholar 

  26. L. Martinez-Medina, A. Pérez-Villegas, and A. Peimbert, Mon. Not. R. Astron. Soc. 512, 1574 (2022).

    Article  ADS  Google Scholar 

  27. A. M. Mel’nik, A. K. Dambis, and A. S. Rastorguev, Astron. Lett. 27, 521 (2001).

    Article  ADS  Google Scholar 

  28. Yu. N. Mishurov and I. A. Zenina, Astron. Astrophys. 341, 81 (1999).

    ADS  Google Scholar 

  29. Yu. N. Mishurov, I. A. Zenina, A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Astron. Astrophys. 323, 775 (1997).

    ADS  Google Scholar 

  30. I. I. Nikiforov and A. V. Veselova, Astron. Lett. 44, 81 (2018).

    Article  ADS  Google Scholar 

  31. G. N. Ortiz-León, L. Loinard, S. A. Dzib, P. A. B. Galli, M. Kounkel, A. J. Mioduszewski, L. F. Rodriguez, R. M. Torres, et al., Astrophys. J. 865, 73 (2018).

    Article  ADS  Google Scholar 

  32. G. N. Ortiz-León, K. M. Menten, T. Kaminski, A. Brunthaler, M. J. Reid, and R. Tylenda, Astron. Astrophys. 638, 17 (2020).

    Article  ADS  Google Scholar 

  33. A. S. Rastorguev, M. V. Zabolotskikh, A. K. Dambis, N. D. Utkin, V. V. Bobylev, and A. T. Bajkova, Astrophys. Bull. 72, 122 (2017).

    Article  ADS  Google Scholar 

  34. M. J. Reid, K. M. Menten, X. W. Zheng, A. Brunthaler, and Y. Xu, Astrophys. J. 705, 1548 (2009).

    Article  ADS  Google Scholar 

  35. M. J. Reid, N. Dame, K. M. Menten, A. Brunthaler, X. W. Zheng, Y. Xu, J. Li, N. Sakai, et al., Astrophys. J. 885, 131 (2019).

    Article  ADS  Google Scholar 

  36. N. Sakai, M. J. Reid, K. M. Menten, A. Brunthaler, and T. M. Dame, Astrophys. J. 876, 30 (2019).

    Article  ADS  Google Scholar 

  37. N. Sakai, T. Nagayama, H. Nakanishi, N. Koide, T. Kurayama, N. Izumi, T. Hirota, T. Yoshida, et al., Publ. Astron. Soc. Jpn. 72, 53 (2020).

    Article  ADS  Google Scholar 

  38. N. Sakai, H. Nakanishi, K. Kurahara, D. Sakai, K. Hachisuka, J.-S. Kim, and O. Kameya, Publ. Astron. Soc. Jpn. 74, 209 (2022).

    Article  ADS  Google Scholar 

  39. A. Sanna, M. J. Reid, T. M. Dame, K. M. Menten, and A. Brunthaler, Science (Washington, DC, U. S.) 358, 227 (2017).

    Article  ADS  Google Scholar 

  40. D. M. Skowron, J. Skowron, P. Mróz, et al., Science (Washington, DC, U. S.) 365, 478 (2019).

    Article  ADS  Google Scholar 

  41. A. S. Stepanishchev and V. V. Bobylev, Astron. Lett. 39, 185 (2013).

    Article  ADS  Google Scholar 

  42. L. Thulasidharan, E. D’Onghia, E. Poggio, et al., arXiv: 2112.08390 (2021).

  43. H.-F. Wang, M. López-Corredoira, Y. Huang, J. Chang, H.-W. Zhang, J. L. Carlin, et al., Astrophys. J. 897, 119 (2020).

    Article  ADS  Google Scholar 

  44. L. M. Widrow, J. Barber, M. H. Chequers, and E. Cheng, Mon. Not. R. Astron. Soc. 440, 1971 (2014).

    Article  ADS  Google Scholar 

  45. Y. W. Wu, M. J. Reid, N. Sakai, T. M. Dame, K. M. Menten, A. Brunthaler, Y. Xu, J. J. Li, et al., Astrophys. J. 874, 13 (2019).

    Article  Google Scholar 

  46. Y. Xu, S. B. Bian, M. J. Reid, J. J. Li, B. Zhang, Q. Z. Yan, T. M. Dame, K. M. Menten, et al., Astron. Astrophys. 616, L15 (2018).

    Article  ADS  Google Scholar 

  47. Y. Xu, S. B. Bian, M. J. Reid, J. J. Li, K. M. Menten, T. M. Dame, B. Zhang, A. Brunthaler, et al., Astrophys. J. Suppl. Ser. 253, 9 (2021).

    Article  Google Scholar 

  48. M. V. Zabolotskikh, A. S. Rastorguev, and A. K. Dambis, Astron. Lett. 28, 454 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, V.V., Bajkova, A.T. Parameters of the Galactic Spiral Density Wave from Masers with Parallax Errors Less Than 10\(\boldsymbol{\%}\). Astron. Lett. 48, 376–388 (2022). https://doi.org/10.1134/S1063773722070015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722070015

Keywords:

Navigation