Skip to main content
Log in

Generation of dense multicharged ion flows from an ECR plasma confined in a quasi-gas-dynamic magnetic cusp trap

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The possibility of generating dense multicharged ion beams with a current density as high as ∼1 A/cm2 from an ECR plasma confined in a quasi-gas-dynamic cusp trap is studied both theoretically and experimentally. The most important advantages of this type of ion source are that the plasma in the cusp is stabile against MHD perturbations and that a trap intended to operate at fairly high pump-field frequencies (above 30 GHz) is relatively inexpensive. A theoretical model of confinement of a high-density nonequilibrium ECR plasma (T e T i ) in an open magnetic trap is proposed and results are presented from model experiments with an ∼30-cm-long cusp trap (here, by the cusp length is meant the volume of a paraxial magnetic tube divided by the area of its cross sections in magnetic mirrors) pumped by a pulsed microwave field with a frequency of 37.5 GHz and power of 100 kW. The possibility of achieving a quasi-gas-dynamic regime of plasma confinement of an ECR plasma in a cusp trap is demonstrated. Ion beams with a average ion charge number of 2–4 (depending on the sort of working gas) and current densities unprecedented for ECR sources are obtained. Good agreement between theoretical and experimental results makes it possible to reliably predict the ion beam parameters that can be achieved at even higher microwave frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Golubev, S. V. Razin, V. E. Semenov, et al., Rev. Sci. Instrum. 71, 669 (2000).

    Article  ADS  Google Scholar 

  2. J. L. Bouly, J. C. Curdy, R. Geller, et al., Rev. Sci. Instrum. 73, 528 (2002).

    Article  ADS  Google Scholar 

  3. D. Leitner, C. M. Lyneis, S. R. Abbot, et al., in Proceedings of the 16th International Workshop on ECR Ion Sources, Berkeley, CA, 2004, p. 3.

  4. S. Gamino, G. Ciavola, L. Celona, et al., Rev. Sci. Instrum. 71, 4090 (2001).

    Article  ADS  Google Scholar 

  5. R. F. Post, Nucl. Fusion 27, 1579 (1987).

    Google Scholar 

  6. M. G. Haines, Nucl. Fusion 17, 881 (1977).

    Google Scholar 

  7. M. I. Belavin, V. A. Zhil’tsov, and Yu. A. Kucheryaev, Fiz. Plazmy 16, 984 (1990) [Sov. J. Plasma Phys. 16, 572 (1990)].

    Google Scholar 

  8. K. Sudlitz, J. Phys. Colloq. 50, C1–779 (1989).

    Article  Google Scholar 

  9. M. Delaunay, Rev. Sci. Instrum. 61, 267 (1990).

    Article  ADS  Google Scholar 

  10. K. Sudlitz, A. Lagodzinski, and J. Choinski, in Proceedings of the 11th International Workshop on ECR Ion Sources, Groningen, 1993, p. 145.

  11. K. Sudlitz, in Proceedings of the 12th International Workshop on ECR Ion Sources, Saitama, 1995, p. 217.

  12. M. H. Rashid and R. K. Bhandari, Rev. Sci. Instrum. 74, 4216 (2003).

    Article  ADS  Google Scholar 

  13. V. V. Mirnov and D. D. Ryutov, Pis’ma Zh. Tekh. Fiz. 5, 678 (1979) [Sov. Tech. Phys. Lett. 5, 279 (1979)].

    Google Scholar 

  14. S. V. Golubev, S. V. Razin, and V. A. Skalyga, Trans. Fusion Sci. Tech. 47(1T), 345 (2005).

    Google Scholar 

  15. R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas (Institute of Physics Publishing, London, 1996).

    Google Scholar 

  16. V. P. Pastukhov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Énergoatomizdat, Moscow, 1984; Consultants Bureau, New York, 1987), Vol. 13.

    Google Scholar 

  17. E. V. Suvorov and M. D. Tokman, Fiz. Plazmy 15, 934 (1989) [Plasma Phys. Rep. 15, 540 (1989)].

    Google Scholar 

  18. D. D. Ryutov, Plasma Phys. Controlled Fusion 28, 191 (1986).

    Article  ADS  Google Scholar 

  19. G. I. Dimov, A. A. Ivanov, V. S. Koidan, and E. P. Kruglyakov, in Proceedings of the 28th EPS Conference on Controlled Fusion and Plasma Physics, Funchal, 2001, ECA 25A, 461 (2001).

    Google Scholar 

  20. V. E. Semenov, V. A. Skalyga, and V. G. Zorin, Rev. Sci. Instrum. 73, 635 (2002).

    Article  ADS  Google Scholar 

  21. W. Lotz, Z. Phys. 216, 241 (1968).

    Article  ADS  Google Scholar 

  22. G. S. Voronov, Atom. Data Nucl. Data Tables 65, 1 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Bokhanov, V.G. Zorin, I.V. Izotov, S.V. Razin, A.V. Sidorov, V.A. Skalyga, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 5, pp. 387–396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokhanov, A.F., Zorin, V.G., Izotov, I.V. et al. Generation of dense multicharged ion flows from an ECR plasma confined in a quasi-gas-dynamic magnetic cusp trap. Plasma Phys. Rep. 33, 347–355 (2007). https://doi.org/10.1134/S1063780X07050017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X07050017

PACS numbers

Navigation