Skip to main content
Log in

Investigation of Spectroscopic and Optoelectronic Properties of Phthalocyanine Molecules

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Thin-film structural, electrical and optical characteristics of some phthalocyanines (ZnPc, NiPc, CoPc, CuPc and LiPc) were studied by UV-visible spectroscopy and quantum chemical calculations. Gaussian software was used to find some features of ZnPc, NiPc, CoPc, CuPc and LiPc in the gas phase such as bandgap energy, HOMO, LUMO, hardness, softness, electronegativity, electrophilicity, back-donation energy and electron transfer. The electrostatic potential map of Pcs compounds was calculated and it lets us see the size and condition of molecules. Potential maps of static electricity are useful in forecasting the behavior of complicated particles in natural sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Reddy, K.R.V., and Keshavayya, J., Dyes Pigments, 2002, vol. 53, p. 187. https://doi.org/10.1016/S0143-7208(02)00011-6

    Article  Google Scholar 

  2. McKeown, N.B., Phthalocyanine Materials: Synthesis, Structure, and Function, Cambridge: Cambridge University Press, 1998.

  3. Qadr, H.M., Atom Indonesia, 2020, vol. 46, p. 47. https://doi.org/10.17146/aij.2020.923

    Article  Google Scholar 

  4. Qadr, H.M., Russ. J. Non-Ferrous Met., 2021, vol. 62, p. 561. https://doi.org/10.3103/S1067821221050096

    Article  Google Scholar 

  5. Qadr, H.M., Phys. Part. Nucl. Lett., 2021, vol. 18, p. 185. https://doi.org/10.1134/S1547477121020151

    Article  CAS  Google Scholar 

  6. Rosenthal, I., Photochem. Photobiol., 1991, vol. 53, p. 859. https://doi.org/10.1111/j.1751-1097.1991.tb09900.x

    Article  CAS  PubMed  Google Scholar 

  7. Moser, F.H., and Thomas, A.L., The Phthalocyanines, Boca Raton: CRC Press, 1983, vol. 2.

  8. Semushkina, G.I., Mazalov, L.N., Basova, T.V., and Gulyaev, R.V., J. Struct. Chem., 2014, vol. 55, p. 232. https://doi.org/10.1134/S0022476614020061

    Article  CAS  Google Scholar 

  9. Yilmaz, E.Y., Synthesis and Characterization of New Bis-phthalocyanine Compounds and Investigation of Thermal Properties, Elazig: Fırat Üniversitesi, 2015.

  10. Li, F., Gentemann, S., Kalsbeck, W.A., Seth, J., Lindsey, J.S., Holten, D., and Bocian, D.F., J. Mater. Chem., 1997, vol. 7, p. 1245. https://doi.org/10.1039/A700146K

    Article  CAS  Google Scholar 

  11. Roy, D., Das, N.M., Shakti, N., and Gupta, P.S., RSC Adv., 2014, vol. 4, p. 42514. https://doi.org/10.1039/C4RA05417B

    Article  CAS  Google Scholar 

  12. Isago, H., Leznoff, C.C., Ryan, M.F., Metcalfe, R.A., Davids, R., and Lever, A.B.P., Bull. Chem. Soc. Japan, 1998, vol. 71, p. 1039. https://doi.org/10.1246/bcsj.71.1039

    Article  CAS  Google Scholar 

  13. Grate, J.W., and Abraham, M.H., Sensors and Actuators (B), 1991, vol. 3, p. 85. https://doi.org/10.1016/0925-4005(91)80202-U

    Article  CAS  Google Scholar 

  14. Tuncel, S., Dumoulin, F., Gailer, J., Sooriyaarachchi, M., Atilla, D., Durmuş, M., Bouchu, D., Savoie, H., Boyle, R.W., and Ahsen, V., Dalton Trans., 2011, vol. 40, p. 4067. https://doi.org/10.1039/C0DT01260B

    Article  CAS  PubMed  Google Scholar 

  15. Qadr, H.M., The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science, 2020, vol. 43, p. 13. https://doi.org/10.35219/mms.2020.4.02

    Article  CAS  Google Scholar 

  16. Çakıcı, H., Esenpınar, A.A., and Bulut, M., Polyhedron, 2008, vol. 27, p. 3625. https://doi.org/10.1016/j.poly.2008.09.016

    Article  CAS  Google Scholar 

  17. Qadr, H.M., Annals of the University of Craiova, Physics, 2019, vol. 29, p. 68.

    Google Scholar 

  18. Qader, I.N., Qadr, H.M., and Ali, P.H., Semiconductors, 2021, vol. 55, p. 960.

    Article  CAS  Google Scholar 

  19. Mainville, M., Ambrose, R., Fillion, D., Hill, I.G., Leclerc, M., and Johnson, P.A., ACS Appl. Energy Mater., 2021, vol. 4, p. 11090. https://doi.org/10.1021/acsaem.1c01994

    Article  CAS  Google Scholar 

  20. Chen, Y., Zheng, Y., Jiang, Y., Fan, H., and Zhu, X., J. Am. Chem. Soc., 2021, vol. 143, p. 4281. https://doi.org/10.1021/jacs.0c12818

    Article  CAS  PubMed  Google Scholar 

  21. Sekkat, N., Bergh, H.v.d., Nyokong, T., and Lange, N., Molecules, 2012, vol. 17, p. https://doi.org/10.3390/molecules17010098

  22. Drechsel, J., Männig, B., Kozlowski, F., Pfeiffer, M., Leo, K., and Hoppe, H., Appl. Phys. Lett., 2005, vol. 86, p. 244102. https://doi.org/10.1063/1.1935771

    Article  CAS  Google Scholar 

  23. El-Nahass, M.M., El-Gohary, Z., and Soliman, H.S., Optics & Laser Technol., 2003, vol. 35, p. 523. https://doi.org/10.1016/S0030-3992(03)00068-9

    Article  CAS  Google Scholar 

  24. Pfuetzner, S., Meiss, J., Petrich, A., Riede, M., and Leo, K., Appl. Phys. Lett., 2009, vol. 94, p. 253303. https://doi.org/10.1063/1.3154554

    Article  CAS  Google Scholar 

  25. Ponce, F.A., and Bour, D.P., Nature, 1997, vol. 386, p. 351. https://doi.org/10.1038/386351a0

    Article  CAS  Google Scholar 

  26. Yuan, M., Quan, L.N., Comin, R., Walters, G., Sabatini, R., Voznyy, O., Hoogland, S., Zhao, Y., Beauregard, E.M., Kanjanaboos, P., Lu, Z., Kim, D.H., and Sargent, E.H., Nature Nanotechnol., 2016, vol. 11, p. 872. https://doi.org/10.1038/nnano.2016.110

    Article  CAS  Google Scholar 

  27. Tarrad, S.N., Hussain, S.A., and Al-Asady, F.H., AIP Conf. Proceed., 2020, vol. 2235, p. 020036. https://doi.org/10.1063/5.0008854

    Article  CAS  Google Scholar 

  28. Moazzami, K., Phillips, J., Lee, D., Krishnamurthy, S., Benoit, G., Fink, Y., and Tiwald, T., J. Electron. Mater., 2005, vol. 34, p. 773. https://doi.org/10.1007/s11664-005-0019-3

    Article  CAS  Google Scholar 

  29. Tan, W., Koughia, K., Singh, J., and Kasap, S., Optical Properties of Condensed Matter and Applications, 2006, vol. 6, p. 1.

    Google Scholar 

  30. Adachi, S., Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles, Boston: Springer Science & Business Media, 2012.

  31. Sharma, N., Prabakar, K., Ilango, S., Dash, S., and Tyagi, A.K., Adv. Mater. Proceed., 2021, vol. 2, p. 342. https://doi.org/10.5185/amp.2017/511

    Article  Google Scholar 

  32. Ledinsky, M., Schönfeldová, T., Holovský, J., Aydin, E., Hájková, Z., Landová, L., Neyková, N., Fejfar, A., and De Wolf, S., J. Phys. Chem. Lett., 2019, vol. 10, p. 1368. https://doi.org/10.1021/acs.jpclett.9b00138

    Article  CAS  PubMed  Google Scholar 

  33. Salloum, M.I., Grunsky, O.S., Shimko, A.A., Tver’yanovich, A.S., and Tver’yanovich, Y.S., Russ. J. Gen. Chem., 2010, vol. 80, p. 1543. https://doi.org/10.1134/S1070363210080013

    Article  CAS  Google Scholar 

  34. Dyari Mustafa, M. and Hiwa Mohammad, Q., Protect. Metals Phys. Chem. Surf., 2021, vol. 57, p. 943. https://doi.org/10.1134/S207020512105018X

    Article  Google Scholar 

  35. Sharma, A., Varshney, M., Chae, K.-H., and Won, S.O., RSC Adv., 2018, vol. 8, p. 26423. https://doi.org/10.1039/C8RA03347A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hervé, P. and Vandamme, L.K.J., Infrared Phys. Technol., 1994, vol. 35, p. 609. https://doi.org/10.1016/1350-4495(94)90026-4

    Article  Google Scholar 

  37. Orek, C., Gündüz, B., Kaygili, O., and Bulut, N., Chem. Phys. Lett., 2017, vol. 678, p. 130. https://doi.org/10.1016/j.cplett.2017.04.050

    Article  CAS  Google Scholar 

  38. Reddy, R.R., Rama Gopal, K., Narasimhulu, K., Reddy, L.S.S., Kumar, K.R., Reddy, C.V.K., and Ahmed, S.N., Opt. Mater., 2008, vol. 31, p. 209. https://doi.org/10.1016/j.optmat.2008.03.010

    Article  CAS  Google Scholar 

  39. Ravindra, N.M., Ganapathy, P., and Choi, J., Infrared Phys. Technol., 2007, vol. 50, p. 21. https://doi.org/10.1016/j.infrared.2006.04.001

    Article  CAS  Google Scholar 

  40. Mamand, D.M., Investigation of Spectroscopic and Optoelectronic Properties of Benzimidazobenzophenanthroline Molecule, Elazig: Fen Bilimleri Enstitüsü, 2020.

  41. Schütz, A., Günthner, M., Motz, G., Greißl, O., and Glatzel, U., Surf. Coat. Technol., 2012, vol. 207, p. 319.

    Article  Google Scholar 

  42. Dresselhaus, M.S., Lecture Notes (Massachusetts Institute of Technology, Cambridge, MA), 2001, vol. 17, p. 15.

  43. Yoshino, K., Oyama, S., and Yoneta, M., J. Mater. Sci., 2008, vol. 19, p. 203. https://doi.org/10.1007/s10854-007-9333-2

    Article  CAS  Google Scholar 

  44. Govindasamy, G., Murugasen, P., and Sagadevan, S., Mater. Res., 2016, vol. 20, p. 62. https://doi.org/10.1590/1980-5373-MR-2016-0441

    Article  Google Scholar 

  45. Jimenez-Gonzalez, A.E., Urueta, J.A.S., and SuarezParra, R., J. Crystal Growth, 1998, vol. 192, p. 430.

    Article  CAS  Google Scholar 

  46. Sassi, M., Oueslati, A., Moutia, N., Khirouni, K., and Gargouri, M., Ionics, 2017, vol. 23, p. 847. https://doi.org/10.1007/s11581-016-1903-y

    Article  CAS  Google Scholar 

  47. Lyashchenko, A.K., Loginova, D.V., Lileev, A.S., Ivanova, N.A., and Efimenko, I.A., Russ. J. Coord. Chem., 2009, vol. 35, p. 633. https://doi.org/10.1134/S1070328409090012

    Article  CAS  Google Scholar 

  48. Xie, P., Wang, Z., Zhang, Z., Fan, R., Cheng, C., Liu, H., Liu, Y., Li, T., Yan, C., Wang, N., and Guo, Z., J. Mater. Chem. ©, 2018, vol. 6, p. 5239. https://doi.org/10.1039/C7TC05911F

    Article  CAS  Google Scholar 

  49. Yang, K., Huang, X., Huang, Y., Xie, L., and Jiang, P., Chem. Mater., 2013, vol. 25, p. 2327.

    Article  CAS  Google Scholar 

  50. Mamand, D., J. Phys. Chem. Funct. Mater., 2019, vol. 2, p. 77.

    Google Scholar 

  51. Mamand, D., J. Phys. Chem. Funct. Mater., 2019, vol. 2, p. 32.

    Google Scholar 

  52. Qadr, H.M., and Mamand, D.M., J. Bio TriboCorrosion, 2021, vol. 7, p. 140. https://doi.org/10.1007/s40735-021-00566-9

    Article  Google Scholar 

  53. Mamand, D.M., Awla, A.H., Anwer, T.M.K., and Qadr, H.M., Chimica Techno Acta, 2022, vol. 9, p. 20229203. https://doi.org/10.15826/chimtech.2022.9.2.03

    Article  CAS  Google Scholar 

  54. Mamand, D.M., Rasul, H.H., Omer, P.K., and Qadr, H.M., Condens. Matter Interphases, 2022, vol. 24, p. 227. https://doi.org/10.17308/kcmf.2022.24/9263

    Article  Google Scholar 

  55. Baei, M.T., Lemeski, E.T., and Soltani, A., Russ. J. Inorg. Chem., 2017, vol. 62, p. 325. https://doi.org/10.1134/S0036023617030044

    Article  CAS  Google Scholar 

  56. Erdoğan, Ş., Safi, Z.S., Kaya, S., Işın, D.Ö., Guo, L., and Kaya, C., J. Mol. Struct., 2017, vol. 1134, p. 751. https://doi.org/10.1016/j.molstruc.2017.01.037

    Article  CAS  Google Scholar 

  57. Ghiasi, R., Pasdar, H., and Fereidoni, S., Russ. J. Inorg. Chem., 2016, vol. 61, p. 327. https://doi.org/10.1134/S0036023616030104

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the University of Raparin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Qadr.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamand, D.M., Anwer, T.M.K., Qadr, H.M. et al. Investigation of Spectroscopic and Optoelectronic Properties of Phthalocyanine Molecules. Russ J Gen Chem 92, 1827–1838 (2022). https://doi.org/10.1134/S1070363222090249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222090249

Keywords:

Navigation