Skip to main content
Log in

Synthesis, Characterization, and Biological Evaluation of Novel Cyclohexenone Derivatives Incorporating Azo, Triazene, and Tetraazene Moieties

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The new cyclohexenone derivatives have been synthesized by diazo-coupling reactions using 3,5-diphenylcyclohex-2-en-1-one (2) and hydrazone derivative 3 as versatile scaffolds. The structures of the newly synthesized compounds were smoothly elucidated based upon different spectral techniques. The new compounds which bearing azo, triazene or tetraazene moieties were evaluated as antioxidant and antimicrobial agents. The minimal inhibitory concentrations (MICs) values for the most active compounds in antibacterial activity were evaluated. Compounds 8 and 15 revealed the highest antioxidant activity with inhibition values (53.5%) and (47.8%), respectively. In the case of S. aureus, compound 10 exhibited potent antibacterial activity with (95.8%) AI. In the case of E. coli, compound 10 revealed excellent antibacterial activity with (84.6%) AI. In the case of C. albicans, compounds 10, 12 and 14 revealed the best activities with an activity index (66.7–74.1%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.

Similar content being viewed by others

REFERENCES

  1. Tretyakov, N.A., Dmitriev, M.V., and Maslivets, A.N., Russ. J. Org. Chem., 2021, vol. 57, p. 13. https://doi.org/10.1134/S1070428021010024

    Article  CAS  Google Scholar 

  2. Bae, B.H., Im, K.S., Choi, W.C., Hong, J., Lee, C-O., Choi, J.S., Son, B.W., Song, J-I., and Jung, J.H., J. Nat. Prod., 2000, vol. 63, p. 1511. https://doi.org/10.1021/np0002076

  3. Yamamoto, H. and Sham, J.H., J. Am. Chem. Soc., 1979, vol. 101, p. 1609. https://doi.org/10.1021/ja00500a049

  4. Goeke, A., Mertl, D., and Brunner, G., Angew. Chem. Int. Ed., 2005, vol. 44, p. 99. https://doi.org/10.1002/anie.200461207

  5. Yamashita, S., Iso, K., and Hirama, M., Org. Lett., 2008, vol. 10, p. 3413. https://doi.org/10.1021/ol8012099

  6. Dyachenko, V.D., Sukach, S.M., and Morkovnik, A.S., Russ. J. Org. Chem., 2020, Vol. 56, p. 949. https://doi.org/10.1134/S1070428020060019

  7. Shi, Z., Grohmann, C., and Glorius, F., Angew. Chem., Int. Ed., 2013, vol. 52, p. 5393. https://doi.org/10.1002/anie.201301426

  8. Buffa, R., Sedova, P., Basarabova, I., Moravcova, M., Wolfova, L., Bobula, T., and Velebny, V., Carbohydr. Polym., 2015, vol. 134, p. 293. https://doi.org/10.1016/j.carbpol.2015.07.084

  9. Hammuda, A., Shalaby, R., Rovida, S., Edmondson, D.E., Binda, C., and Khalil, A., Eur. J. Med. Chem., 2016, vol. 114, p. 162. https://doi.org/10.1016/j.ejmech.2016.02.038

  10. Gouhar, R.S., Ewies, E.F., El-Shehry, M.F., Shaheen, M.N.F., and Ibrahim, E.-M.M.E., J. Heterocycl. Chem., 2018, vol. 55, p. 2368. https://doi.org/10.1002/jhet.3301

  11. Green, O., Smith, N.A., Ellis, A.B., and Burstyn, J.N., J. Am. Chem. Soc., 2004, vol. 126, p. 5952. https://doi.org/10.1021/ja039203o

  12. Hu, B., Liu, T.X., Zhang, P., Liu, Q., Bi, J., Shi, L., Zhang, Z., and Zhang, G., Org. Lett., 2018, vol. 20, p. 4801. https://doi.org/10.1021/acs.orglett.8b01956

  13. Bianco, A., Cavarischia, C., and Guiso, M., Eur. J. Org. Chem., 2004, p. 2894. https://doi.org/10.1002/ejoc.200400032

  14. Schroeder, M., Mathys, M., Ehrensperger, N., and Büchel, M., Chem. Biodiversity 2014, vol. 11, p. 1651. https://doi.org/10.1002/cbdv.201400072

  15. Von Wangelin, A.J., Neumann, H., Gördes, D., Klaus, S., Strübing, D., and Beller, M., Chem. Eur. J., 2003, vol. 9, p. 4286. https://doi.org/10.1002/chem.200305048

  16. Bag, S., Ghosh, S., Tulsan, R., Sood, A., Zhou, W., Schifone, C., Foster, M., LeVine, H., Török, B., and Török, M., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 2614. https://doi.org/10.1016/j.bmcl.2013.02.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reddy, L.V., Kumar, V., Sagar, R., and Shaw, A.K., Chem. Rev., 2013, vol. 113, p. 3605. https://doi.org/10.1021/cr200016m

  18. Hu, L., Lu, X., and Deng, L., J. Am. Chem. Soc., 2015, vol. 137, p. 8400. https://doi.org/10.1021/jacs.5b05345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Breuer, M., Ditrich, K., Habicher, T., Kesseler, B., Hauer, M., Stürmer, R., and Zelinski, T., Angew. Chem., Int. Ed., 2004, vol. 43, p. 788. https://doi.org/10.1002/anie.200300599

  20. Wu, S., Yang, N., Liu, Y., Cao, J., Hu, H., Sun, Y., and Liu, J., J. Polym. Sci., Part A: Polym. Chem., 2011, vol. 49, p. 293. https://doi.org/10.1002/pola.24452

  21. Nazir, R., Meiling, T.T., Cywiński, P.J., and Gryko, D.T., Asian J. Org. Chem., 2015, vol. 4, p. 929. https://doi.org/10.1002/ajoc.201500242

  22. Shin, S.Y., Park, J., Jung, Y., Lee, Y.H., Koh, D., Yoon, Y., and Lim, Y., Appl. Biol. Chem., 2020, vol. 63, p. 1. https://doi.org/10.1186/s13765-020-00567-1

  23. Yaouba, S., Koch, A., Guantai, E.M., Derese, S., Irungu, B., Heydenreich, M., and Yenesew, A., Phytochem. Lett., 2018, vol. 23, p. 141. https://doi.org/10.1016/j.phytol.2017.12.001

  24. Nesterkina, M., Barbalat, D., Konovalova, I., Shishkina, S., Atakay, M., Salih, B., and Kravchenko, I., Nat. Prod. Res., 2021, vol. 35, p. 4978. https://doi.org/10.1080/14786419.2020.1756804

  25. Mousavi, S.R., Chirality, 2016, vol. 28, p. 728. https://doi.org/10.1002/chir.22653

  26. Saranya, A.V. and Ravi, S., J. Pharm. Res., 2012, vol. 5, p. 1098. https://doi.org/10.1016/j.ejphar.2021.174091

  27. Okoth, D.A., Akala, H.M., Johnson, J.D., and Koorbanally, N.A., Med. Chem. Res., 2016, vol. 25, p. 690. https://doi.org/10.1007/s00044-016-1521-2

  28. Khan, J., Ali, G., Khan, R., Ullah, R., and Ullah, S., Neurol. Sci. 2019, vol. 40, p. 1799. https://doi.org/10.1007/s10072-019-03884-6

  29. Ledoux, A., St-Gelais, A., Cieckiewicz, E., Jansen, O., Bordignon, A., Illien, B., Di Giovanni, N., Marvilliers, A., Hoareau, F., Pendeville, H., Leclercq, J.Q., and Frédérich, M., J. Nat. Prod., 2017, vol. 80, p. 1750. https://doi.org/10.1021/acs.jnatprod.6b01019

  30. Monga, V., Goyal, K., Steindel, M., Malhotra, M., Rajani, D.P., and Rajani, S.D., Med. Chem. Res., 2014, vol. 23, p. 2019. https://doi.org/10.1007/s00044-013-0803-1

  31. Kanagarajan, V., Ezhilarasi, M., Bhakiaraj, D., and Gopalakrishnan, M., Eur. Rev. Med. Pharmacol. Sci., 2013, vol. 17, p. 292. https://doi.org/10.1016/j.ejphar.2021.174091

  32. Das, M. and Manna, K., Curr. Bioact. Compd., 2015, vol. 11, p. 239. https://doi.org/10.2174/157340721104151230104138

  33. Nazar, M.F., Abdullah, M.I., Badshah, A., Mahmood, A., Rana, U.A., and Khan, S.U.-D., J. Mol. Struct., 2015, vol. 1086, p. 8. https://doi.org/10.1016/j.molstruc.2014.12.090

  34. Mansour, S.Y., Sayed, G.H., Al-Halim, S.A., Marzouk, M.I., and Shaban, S.S., Russ. J. Org. Chem., 2020, vol. 56, p. 465. https://doi.org/10.1134/S1070428020030161

  35. Okoth, D.A., and Koorbanally, N.A., Nat. Prod. Commun., 2015, vol. 10, p. 103. https://doi.org/10.1177/1934578X1501000126

  36. Balasubramanian, Μ. and D’souza, A., Tetrahedron, 1968, vol. 24, p. 5399. https://doi.org/10.1016/S0040-4020(01)96334-3

  37. Metwally, M.A., Abdel-Galil, E., Amer, F.A., and Abdallah, A.M., Am. J. Org. Chem., 2012, vol. 2, p. 28. https://doi.org/10.5923/J.AJOC.20120201.06

  38. Afsah, E.M., Arab, A.M., and Abdel-Galil, E., Chemistry Select, 2019, vol. 4, p. 10649. https://doi.org/10.1002/slct.201901525

  39. Howard, A.N. and Wild, F., Biochem. J., 1957, vol. 65, p. 651. https://doi.org/10.1042/bj0650651

  40. Ahern, T.P. and Vaughan, K., J. Chem. Soc., Chem. Commun., 1973, p. 701. https://doi.org/10.1039/C39730000701

  41. Chandrashekarachar, D., Chaitramallu, M., Rekha, N.D., Kesagudu, D., and Ranjini, P., Brit. J. Pharma. Res., 2016, vol. 11, p. 1. https://doi.org/10.9734/BJPR/2016/25645

  42. Lissi, E.A., Modak, B., Torres, R., Escobar, J., and Urza, A., Free Radical Res., 1999, vol. 30, p. 471. https://doi.org/10.1080/10715769900300511

  43. Refat, H.M. and Fadda, A.A., Eur. J. Med. Chem., 2013, vol. 70, p. 419. https://doi.org/10.1016/j.ejmech.2013.09.003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehad E. Said.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Galil, E., Girges, M.M. & Said, G.E. Synthesis, Characterization, and Biological Evaluation of Novel Cyclohexenone Derivatives Incorporating Azo, Triazene, and Tetraazene Moieties. Russ J Gen Chem 92, 2169–2177 (2022). https://doi.org/10.1134/S1070363222100292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222100292

Keywords:

Navigation