Skip to main content
Log in

Trisubstituted Imidazole and N-Propargyl Imidazole Analogues: Synthesis, Characterization, In Silico Studies and Enzyme Inhibitory Properties

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the α-amylase, pancreatic lipase (PL), and β-glucuronidase enzymes have received much attention as they promise to be potential drug targets for obesity and diabetes-related diseases. In this study, the synthesis and characterization of newly designed tricyclic imidazopyrrolopyrazine analogues with the potential to affect these enzymes were evaluated. The pharmacological evaluation of all imidazopyrrolopyrazine analogues revealed that all the synthesized analogues displayed excellent inhibitory effects against α-amylase, with the IC50 values of these analogues ranging from 4.05±0.7 to 5.61±0.8 µM. The IC50 values of all synthesized analogues were also found to be effective inhibitors, ranging from 5.2±0.5 to 13.7±2.3 µM, against pancreatic lipase. Furthermore, all analogues exhibited moderate inhibition in a wide range of 151.4±9.1 to 302.5±7.9 µM against β-glucuronidase. Additionally, all the synthesized analogues displayed moderate binding affinity with Ferric Reducing Antioxidant Power (FRAP), and low binding affinity with Oxygen Radical Absorbance Capacity (ORAC). This study provides valuable potential for the new tricyclic imidazopyrrolopyrazine analogues in further pharmacological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.

REFERENCES

  1. Taslimi, P., Köksal, E., Gören, A.C., Bursal, E., Aras, A., Kılıç, Ö., and Gülçin, İ., Arab. J. Chem., 2020, vol. 13, no. 3, p. 4528. https://doi.org/10.1016/j.arabjc.2019.10.002

  2. Cetin, A., Donmez, A., Dalar, A., and Bildirici, I., Med. Chem. Res., 2023, vol. 32, no. 1, p. 189. https://doi.org/10.1007/s00044-022-02974-z

  3. Irshad, M., Jamal, S.B., Faheem, M., Aslam, M., Shafqat, S.S., and Kanwal, A., Russ. J. Gen. Chem., 2021, vol. 91, no. 6, p. 1084. https://doi.org/10.1134/S1070363221060153

  4. Vachhani, M.D., Lalpara, J.N., Hadiyal, S.D., and Dubal, G.G., Russ. J. Org. Chem., 2022, vol. 58, no. 3, p. 356. https://doi.org/10.1134/S1070428022030137

  5. Huneif, M.A., Alshehri, D.B., Alshaibari, K.S., Dammaj, M.Z., Mahnashi, M.H., Majid, S.U., and Sadiq, A., Biomed. Pharmacoter., 2022, vol. 150, p. 113038. https://doi.org/10.1016/j.biopha.2022.113038

  6. Sujayev, A., Taslimi, P., Garibov, E., Karaman, M., and Zangeneh, M. M., Bioorg. Chem., 2020, vol. 104, p. 104216. https://doi.org/10.1016/j.bioorg.2020.104216

  7. Ullah, H., Uddin, I., Rahim, F., Khan, F., Taha, M., Khan, M.U., and Hussain, J., J. Mol. Struct., 2022, vol. 1251, p. 132058. https://doi.org/10.1016/j.molstruc.2021.132058

  8. Cetin, A., Donmez, A., Dalar, A., and Bildirici, I., ChemistrySelect, 2023, vol. 8(6), e202204926.

  9. Hradec, E., Petřík, R., and Pezlarová, J., J. Urol., 1965, vol. 94, no. 4, p. 430. https://doi.org/10.1016/S0022-5347(17)63643-7

  10. Payton, E., Khubchandani, J., Thompson, A., and Price, J.H., J. Community Health, 2017, vol. 42, no. 6, p. 1118. https://doi.org/10.1007/s10900-017-0360-5

    Article  PubMed  Google Scholar 

  11. Almandil, N.B., Taha, M., Gollapalli, M., Rahim, F., Ibrahim, M., Mosaddik, A., and Anouar, E.H., BMC Chem., 2019, vol. 13, no. 1, p. 1. https://doi.org/10.1186/s13065-019-0522-x

  12. Gulçin, İ., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Kufrevioglu, O.I., and Şen, F. Int. J. Biol. Macromol., 2018, vol. 119, p. 741. https://doi.org/10.1016/j.ijbiomac.2018.08.001

  13. Türkan, F., Atalar, M.N., Aras, A., Gülçin, İ., and Bursal, E., Bioorg. Chem., 2020, vol. 94, p. 103333. https://doi.org/10.1016/j.bioorg.2019.103333

    Article  CAS  PubMed  Google Scholar 

  14. Turkan, F., Cetin, A., Taslimi, P., Karaman, M., and Gulçin, İ., Bioorg. Chem., 2019, vol. 86, p. 420. https://doi.org/10.1016/j.bioorg.2019.02.013

  15. Miniyar, B.P., Murumkar, R.P., Patil, S.P., Barmade, A.M., and Bothara, G.K., Mini Rev. Med. Chem., 2013, vol. 13, no. 11, p. 1607.

  16. Saeidnia, S. and Abdollahi, M., DARU J. Pharm. Sci., 2013, vol. 21, no 1, p. 1. https://doi.org/10.1186/2008-2231-21-71

  17. Hans, R.H., Guantai, E.M., Lategan, C., Smith, P.J., Wan, B., Franzblau, S.G., and Chibale, K., Bioorg. Med. Chem. Lett., 2010, vol. 20, no. 3, p. 942. https://doi.org/10.1016/j.bmcl.2009.12.062

  18. Minto, R.E. and Blacklock, B.J., Prog. Lipid Res., 2008, vol. 47, no. 4, p. 233. https://doi.org/10.1016/j.plipres.2008.02.002

  19. Fik-Jaskółka, M.A., Mkrtchyan, A.F., Saghyan, A.S., Palumbo, R., Belter, A., Hayriyan, L.A., and Roviello, G.N., Amino Acids, 2020, vol. 52, p. 755. https://doi.org/10.1007/s00726-020-02849-w

    Article  CAS  PubMed  Google Scholar 

  20. Xie, S., Chen, J., Li, X., Su, T., Wang, Y., Wang, Z., and Li, X., Bioorg. Med. Chem., 2015, vol. 23, no. 13, p. 3722. https://doi.org/10.1016/j.bmc.2015.04.009

  21. Abd El-Meguid, E.A., Awad, H.M., and Anwar, M.M., Russ. J. Gen. Chem., 2019, vol. 89 p. 348. https://doi.org/10.1134/S1070363219020282

  22. Yadav, P., Kumar, R., and Tewari, A.K., Russ. J. Bioorg. Chem., 2020, vol. 46, no. 6, p. 1148. https://doi.org/10.1134/S1068162020060370

  23. Bogdanov, A.V., Sirazieva, A.R., Voloshina, A.D., Abzalilov, T.A., Samorodov, A.V., and Mironov, V.F., Russ. J. Org. Chem., 2022, vol. 58, no. 3, p. 327. https://doi.org/10.1134/S1070428022030101

  24. Kovalenko, A.A., Divaeva, L.N., Zubenko, A.A., Morkovnik, A.S., Drobin, Y.G., Fetisov, L.N., and Dorofeenko, A.I., Russ. J. Bioorg. Chem., 2016, vol. 42, no. 5, p. 551. https://doi.org/10.1134/S1068162016040129

  25. Cetin, A., Lett. Org. Chem., 2019, vol. 16 no. 6, p. 511. https://doi.org/10.2174/1570178615666181106155555

  26. Cetin, A., Lett. Org. Chem., 2016, vol. 13, no. 4, p. 310.

  27. McCue, P. and Shetty, K., Food Biotechnol., 2003, vol. 17, no. 1, p. 27. https://doi.org/10.1081/FBT-120019982

  28. Aroua, L. M., Almuhaylan, H.R., Alminderej, F.M., Messaoudi, S., Chigurupati, S., Al-Mahmoud, S., and Mohammed, H.A., Bioorg. Chem., 2021, vol. 114, p. 105073. https://doi.org/10.1016/j.bioorg.2021.105073

  29. Dunning, B.E. and Gerich, J.E., Endocr. Rev., 2007, vol. 28, no. 3, p. 253. https://doi.org/10.1210/er.2006-0026

  30. Houde, A., Kademi, A., and Leblanc, D., Appl. Biochem. Biotechnol., 2004, vol. 118, no. 1, 155. https://doi.org/10.1385/ABAB:118:1-3:155

  31. Morris, G.M., Huey, R., and Olson, A.J., Curr. Protoc. Bioinformatics., 2008, vol. 24, no. 1, p. 8. https://doi.org/10.1002/0471250953.bi0814s24

  32. Gupta, M., Sharma, R., and Kumar, A., Comput. Biol. Chem., 2018, vol. 76, p. 210. https://doi.org/10.1016/j.compbiolchem.2018.06.005

  33. Cetin, A., Türkan, F., Bursal, E., and Murahari, M., Russ. J. Org. Chem., 2021, vol. 57, no. 4, p. 598. https://doi.org/10.1134/S107042802104014X

  34. Cetin, A., Bursal, E., and Türkan, F., Arab. J. Chem., 2021, vol. 14, no. 12, p. 103449. https://doi.org/10.1016/j.arabjc.2021.103449

  35. Cetin, A., Oguz, E., and Türkan, F., Russ. J. Gen. Chem., 2022, vol. 92, no. 11, p. 2415. https://doi.org/10.1134/S1070363222110263

  36. Kuzu, B., Gül, S., Tan, M., Menges, N., and Balci, M., ChemistrySelect. 2021, vol. 6, no. 9, p. 2366. https://doi.org/10.1002/slct.202100045

  37. Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., and Matsumoto, K., J. Agric. Food Chem., 2001, vol. 49, no. 4, p. 1948. https://doi.org/10.1021/jf001251u

  38. Kim, D.H., Shim, S.B., Kim, N.J., and Jang, I.S., Biol. Pharm. Bull., 1999, vol. 22, no. 2, p. 162. https://doi.org/10.1248/bpb.22.162

  39. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., and Bourne, P.E., Nucleic Acids Res., 2000, vol. 28, no. 1, p. 235. https://doi.org/10.1093/nar/28.1.235

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Faculty of Pharmacy at Van Yuzuncu Yil University for providing the necessary facilities to carry out this research. The Van Yuzuncu Yil University Scientific Research Projects Chairmanship (BAP) is acknowledged for their support of this work (project no. TYL-2018-6913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bildirici.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altiok, M.S., Cetin, A., Kuzu, B. et al. Trisubstituted Imidazole and N-Propargyl Imidazole Analogues: Synthesis, Characterization, In Silico Studies and Enzyme Inhibitory Properties. Russ J Gen Chem 93, 666–679 (2023). https://doi.org/10.1134/S1070363223030210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223030210

Keywords:

Navigation