Skip to main content
Log in

Theoretical Study of the Role of Symmetry Energy as Well as Its Density Slope and Curvature on Neutron Star Core Crust Transition Density Using Finite Range Effective Interaction

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The core crust transition density \({{\rho }_{{\text{t}}}}\) and core crust transition pressure \({{P}_{{\text{t}}}}\) of neutron stars are analyzed with the thermodynamical approach using finite range effective interaction for two different splittings of exchange strength parameters. The role of density derivatives of symmetry energy on \({{\rho }_{{\text{t}}}}\) and \({{P}_{{\text{t}}}}\) are studied and it is found that reducing the effect of slope, the curvature of symmetry energy dominates the variation of transition density. The results are compared with various models quoted in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983).

    Book  Google Scholar 

  2. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure (Springer, New York, 2007).

    Book  Google Scholar 

  3. G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299 (1971).

    Article  ADS  Google Scholar 

  4. C. J. Pethick and D. G. Ravenhall, Ann. Rev. Nucl. Part. Sci. 45, 429 (1995).

    Article  ADS  Google Scholar 

  5. J. K. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485–515 (2012).

    Article  ADS  Google Scholar 

  6. A. L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016).

    Article  ADS  Google Scholar 

  7. M. Oertel, H. Hempel, T. Klähn and S. Typel, Rev. Mod. Phys. 89, 015007 (2017).

    Article  ADS  Google Scholar 

  8. M. Baldo and G. F. Burgio, Prog. Part. Nucl. Phys. 91, 203–258 (2016).

    Article  ADS  Google Scholar 

  9. G. Giuliani, H. Zhenga, and A. Bonasera, Prog. Part. Nucl. Phys. 76, 116–164 (2014).

    Article  ADS  Google Scholar 

  10. V. Graber, N. Anderssson, and M. Hogg, Int. J. Mod. Phys. D 26, 1730015 (2017).

    Article  ADS  Google Scholar 

  11. B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  12. Topical Issue on Nuclear Symmetry Energy, Ed. by B. A. Li, A. Ramos, G. Verde, and I. Vidana, Eur. Phys. J. A 50 (2) (2014).

  13. L. Tsaloukidis et al., Phys. Rev. C 99, 015803 (2019).

    Article  ADS  Google Scholar 

  14. N. Paar, C. C. Moustakidis, T. Marketin, D. Vretenar, and G. A. Lalazissis, Phys. Rev. C 90, 011304(R) (2014).

  15. M. Centelles, X. Roca-Maza, X. Viñas, and M. Varda, Phys. Rev. Lett. 102, 122502 (2009).

    Article  ADS  Google Scholar 

  16. C. J. Horowitz and J. Piekarewitz, Phys. Rev. Lett. 86, 5647 (2001).

    Article  ADS  Google Scholar 

  17. J. M. Lattimer and M. Prakash, Science (Washington, DC, U. S.) 304, 536 (2004).

    Article  ADS  Google Scholar 

  18. J. M. Lattimer and M. Prakash, Phys. Rep. 333, 121 (2000);

    Article  ADS  Google Scholar 

  19. Astrophys. J. 550, 426 (2001).

  20. J. M. Lattimer and M. Prakash, Phys. Rep. 442, 109 (2007).

    Article  ADS  Google Scholar 

  21. G. Baym, H. A. Bethe, and C. J. Pethick, Nucl. Phys. A 175, 225 (1971).

    Article  ADS  Google Scholar 

  22. C. J. Pethick, D. G. Ravenhall, and C. P. Lorenz, Nucl. Phys. A 584, 675 (1995).

    Article  ADS  Google Scholar 

  23. K. Oyamatsu and K. Iida, Phys. Rev. C 75, 015801 (2007).

    Article  ADS  Google Scholar 

  24. C. Ducoin, Ph. Chomaz, and F. Gulminelli, Nucl. Phys. A 789, 403 (2007).

    Article  ADS  Google Scholar 

  25. J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Astrophys. J. 697, 1549 (2009).

    Article  ADS  Google Scholar 

  26. J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).

    Article  ADS  Google Scholar 

  27. J. Fang, H. Pais, S. Pratapsi, and C. Providencia, Phys. Rev. C 95, 062801(R) (2017).

  28. S. Kubis, Phys. Rev. C 76, 025801 (2007).

    Article  ADS  Google Scholar 

  29. S. Kubis, Phys. Rev. C 70, 065804 (2004).

    Article  ADS  Google Scholar 

  30. Ch. C. Moustakidis, T. Nikšič, G. A. Lalazissis, D. Vretenar, and P. Ring, Phys. Rev. C 81, 065803 (2010).

    Article  ADS  Google Scholar 

  31. Ch. C. Moustakidis, Phys. Rev. C 86, 015801 (2012).

    Article  ADS  Google Scholar 

  32. J. Carriere, C. J. Horowitz, and J. Piekarewicz, Astrophys. J. 593, 463 (2003).

    Article  ADS  Google Scholar 

  33. M. Fortin, C. Providência, Ad. R. Raduta, F. Gulminelli, J. L. Zdunic, P. Haensel, and M. Bejjger, Phys. Rev. C 94, 035804 (2016).

    Article  ADS  Google Scholar 

  34. M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys. Rev. C 80, 024316 (2009).

    Article  ADS  Google Scholar 

  35. C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels, Phys. Rev. C 63, 025501 (2001).

    Article  ADS  Google Scholar 

  36. R. Michaels, P. A. Souder, and G. M. Urciuoli, Jefferson Laboratory Proposal PR-00-003 (Jefferson Lab., 2000).

    Google Scholar 

  37. B. Behera, T. R. Routray, B. Sahoo, and R. K. Satpathy, Nucl. Phys. A 699, 770 (2002).

    Article  ADS  Google Scholar 

  38. B. Behera, T. R. Routray, A. Pradhan, S. K. Patra, and P. K. Sahu, Nucl. Phys. A 753, 367 (2005).

    Article  ADS  Google Scholar 

  39. B. Behera, T. R. Routray, A. Pradhan, S. K. Patra, and P. K. Sahu, Nucl. Phys. A 794, 132 (2007).

    Article  ADS  Google Scholar 

  40. D. V. Shetty, S. J. Yennello, and G. A. Souliotis, Phys. Rev. C 75, 034602 (2007).

    Article  ADS  Google Scholar 

  41. Z. W. Liu et al., Phys. Rev. C 97 (2018).

  42. S. Chakraborty, B. Sahoo, and S. Sahoo, Phys. At. Nucl. 78, 43 (2015).

    Article  Google Scholar 

  43. S. Chakraborty, B. Sahoo, and S. Sahoo, Int. J. Mod. Phys. E 21, 1250079 (2012).

    Article  ADS  Google Scholar 

  44. C. Ducoin et al., Phys. Rev. C 83, 045810 (2011).

    Article  ADS  Google Scholar 

  45. W. M. Seif and D. N. Basu, Phys. Rev. C 89, 028801 (2014).

    Article  ADS  Google Scholar 

  46. C. G. Boquera et al., Phys. Rev. C 96, 065806 (2017).

    Article  ADS  Google Scholar 

  47. F. J. Fattoyev and J. Piekarewicz, Phys. Rev. C 82, 025810 (2010).

    Article  ADS  Google Scholar 

  48. C. Providência, S. S. Avancini, R. Cavagnoli, S. Chiacchiera, C. Ducoin, F. Grill, J. Margueron, D. P. Menezes, A. Rabhi, and I. Vidaña, Eur. Phys. J. A 50, 44 (2014).

    Article  ADS  Google Scholar 

  49. C. Gonzalez Boquera et al., Phys. Rev. C 100, 015806 (2019).

    Article  ADS  Google Scholar 

  50. I. Tews, J. M. Lattimer, A. Ohnishi, and E. E. Kolomeitsev, Astrophys. J. 848, 105 (2017).

    Article  ADS  Google Scholar 

  51. M. Dutra, O. Lourenço, J. S. S. Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).

    Article  ADS  Google Scholar 

  52. G. Colò, U. Garg, and H. Sagawa, Eur. Phys. J. A 50, 26 (2014).

    Article  ADS  Google Scholar 

  53. M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A. Delfino, D. P. Menezes, C. Providência, S. Typel, and J. R. Stone, Phys. Rev. C 90, 055203 (2014).

    Article  ADS  Google Scholar 

  54. X. Roca-Maza et al., Phys. Rev. C 88, 024316 (2013).

    Article  ADS  Google Scholar 

  55. C. Mondal, B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, and X. Viñas, Phys. Rev. C 96, 021302(R) (2017).

  56. N. Zhang and B. A. Li, J. Phys. G: Nucl. Part. Phys. 46, 014002 (2019); arXiv: 1808.07955.

  57. C. Mondal et al., Phys. Rev. C 93, 064303 (2016).

    Article  ADS  Google Scholar 

  58. B. A. Li, P. G. Krastev, D. H. Wen, and N. B. Zhang, Eur. Phys. J. A 55, 117 (2019); arXiv: 1905.13175.

  59. M. Pal, S. Chakraborty, B. Sahoo, and S. Sahoo, Int. J. Mod. Phys. E 27, 1850049 (2018).

    Article  ADS  Google Scholar 

  60. M. Pal, S. Chakraborty, B. Sahoo, and S. Sahoo, Int. J. Mod. Phys. E 28, 1950022 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the reviewer for suggesting valuable improvements of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sahoo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Chakraborty, S., Sahoo, B. et al. Theoretical Study of the Role of Symmetry Energy as Well as Its Density Slope and Curvature on Neutron Star Core Crust Transition Density Using Finite Range Effective Interaction. Phys. Part. Nuclei Lett. 19, 97–107 (2022). https://doi.org/10.1134/S154747712202008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747712202008X

Keywords:

Navigation