Skip to main content
Log in

Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. I., Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 1966, vol. 1, fasc. 1, pp. 319–361.

    Google Scholar 

  2. Arnol’d, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85–191; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 6(114), pp. 91–192.

    Article  MathSciNet  MATH  Google Scholar 

  3. Banyaga, A., The Structure of Classical Diffeomorphism Groups, Math. Appl., vol. 400, Dordrecht Kluwer, 1997.

    Book  MATH  Google Scholar 

  4. Abouqateb, A. and Boucetta, M., The Modular Class of a Regular Poisson Manifold and the Reeb Class of Its Symplectic Foliation, C. R. Math. Acad. Sci. Paris, 2003, vol. 337, no. 1, pp. 61–66.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazzoni, G., Fernández, M., and Mu˜noz, V., Non-Formal Co-Symplectic Manifolds, Trans. Amer. Math. Soc., 2015, vol. 367, no. 6, pp. 4459–4481.

    Article  MathSciNet  MATH  Google Scholar 

  6. Braddell, R., Delshams, A., Miranda, E., Oms, C., and Planas, A., An Invitation to Singular Symplectic Geometry, Int. J. Geom. Methods Mod. Phys., 2018 (to appear).

    Google Scholar 

  7. Brylinski, J. L., A Differential Complex for Poisson Manifolds, J. Differential Geom., 1988, vol. 28, no. 1, pp. 93–114.

    Article  MathSciNet  MATH  Google Scholar 

  8. Calabi, E., On the Group of Automorphisms of a Symplectic Manifold, in Problems in Analysis: Lectures at the Sympos. in honor of Salomon Bochner (Princeton Univ., Princeton, N.J., 1969), Princeton, N.J.: Princeton Univ. Press, 1970, pp. 1–26.

    Google Scholar 

  9. Cappelletti-Montano, B., De Nicola, A., and Yudin, I., A Survey on Cosymplectic Geometry, Rev. Math. Phys., 2013, vol. 25, no. 10, 1343002, 55 pp.

    Google Scholar 

  10. Chenciner, A., Poincaré and the Three-Body Problem, in Henri Poincaré, 1912–2012: Proc. of the 16th Poincaré Seminar held in Paris, November 24, 2012, B.Duplantier, V.Rivasseau (Eds.), Prog. Math. Phys., vol. 67, Basel: Birkhäuser/Springer, 2015, pp. 51–149.

    Google Scholar 

  11. Crainic, M., Fernandes, R. L., Martínez Torres, D., Poisson Manifolds of Compact Types (PMCT 1), J. Reine Angew. Math., 6 Apr 2017.

    Google Scholar 

  12. Crainic, M., Fernandes, R. L., Martínez Torres, D., Regular Poisson Manifolds of Compact Types (PMCT 2), arXiv:1603.00064 (2016).

    Google Scholar 

  13. Delshams, A., Kiesenhofer, A., and Miranda, E., Examples of Integrable and Non-Integrable Systems on Singular Symplectic Manifolds, J. Geom. Phys., 2017, vol. 115, pp. 89–97.

    Article  MathSciNet  MATH  Google Scholar 

  14. Etingof, P. and Schedler, T., Zeroth Poisson Homology of Symmetric Powers of Isolated Quasihomogeneous Surface Singularities, J. Reine Angew. Math., 2012, vol. 667, pp. 67–88.

    MathSciNet  MATH  Google Scholar 

  15. Guillemin, V., Miranda, E., and Pires, A.R., Codimension One Symplectic Foliations and Regular Poisson Structures, Bull. Braz. Math. Soc. (N.S.), 2011, vol. 42, no. 4, pp. 607–623.

    Article  MathSciNet  MATH  Google Scholar 

  16. Guillemin, V., Miranda, E., and Pires, A.R., Symplectic and Poisson Geometry on b-Manifolds, Adv. Math., 2014, vol. 264, pp. 864–896.

    Article  MathSciNet  MATH  Google Scholar 

  17. El Kacimi-Alaoui, A., Sur la cohomologie feuilletée, Compositio Math., 1983, vol. 49, no. 2, pp. 195–215.

    MathSciNet  MATH  Google Scholar 

  18. Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 1977, vol. 12, no. 2, pp. 253–300.

    Article  MathSciNet  MATH  Google Scholar 

  19. McGehee, R., Singularities in Classical Celestial Mechanics, in Proc. of the Internat. Congr. of Mathematicians (Helsinki, 1978), Helsinki: Acad. Sci. Fennica, 1980, pp. 827–834.

    Google Scholar 

  20. Miranda, E. and Presas, F., Geometric Quantization of Real Polarizations via Sheaves, J. Symplectic Geom., 2015, vol. 13, no. 2, pp. 421–462.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ono, K., Floer–Novikov Cohomology and the Flux Conjecture, Geom. Funct. Anal., 2006, vol. 16, no. 5, pp. 981–1020.

    Article  MathSciNet  MATH  Google Scholar 

  22. Pichereau, A., Poisson (Co)Homology and Isolated Singularities, J. Algebra, 2006, vol. 299, no. 2, pp. 747–777.

    Article  MathSciNet  MATH  Google Scholar 

  23. Osorno-Torres, B., Codimension-One Symplectic Foliations: Constructions and Examples, PhD Thesis, Utrecht Univ., Utrecht, 2015, 147 pp.

    Google Scholar 

  24. Sacksteder, R., Foliations and Pseudogroups, Amer. J. Math., 1965, vol. 87, pp. 79–102.

    Article  MathSciNet  MATH  Google Scholar 

  25. Thurston, W., Foliations and Groups of Diffeomorphisms, Bull. Amer. Math. Soc., 1974, vol. 80, pp. 304–307.

    Article  MathSciNet  MATH  Google Scholar 

  26. Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Progr. Math., vol. 118, Basel: Birkhäuser, 1994.

    Book  MATH  Google Scholar 

  27. Weinstein, A., The Modular Automorphism Group of a Poisson Manifold, J. Geom. Phys., 1997, vol. 23, nos. 3–4, pp. 379–394.

    Article  MathSciNet  MATH  Google Scholar 

  28. Evens, S., Lu, J.-H., and Weinstein, A., Transverse Measures, the Modular Class and a Cohomology Pairing for Lie Algebroids, Quart. J. Math. Oxford Ser. (2), 1999, vol. 50, no. 200, pp. 417–436.

    Article  MathSciNet  MATH  Google Scholar 

  29. Weinstein, A., The Local Structure of Poisson Manifolds, J. Differential Geom., 1983, vol. 18, no. 3, pp. 523–557.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Martínez-Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Torres, D., Miranda, E. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds. Regul. Chaot. Dyn. 23, 47–53 (2018). https://doi.org/10.1134/S1560354718010045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718010045

MSC2010 numbers

Keywords

Navigation