Skip to main content
Log in

On the Volume Elements of a Manifold with Transverse Zeroes

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Moser proved in 1965 in his seminal paper [15] that two volume forms on a compact manifold can be conjugated by a diffeomorphism, that is to say they are equivalent, if and only if their associated cohomology classes in the top cohomology group of a manifold coincide. In particular, this yields a classification of compact symplectic surfaces in terms of De Rham cohomology. In this paper we generalize these results for volume forms admitting transversal zeroes. In this case there is also a cohomology capturing the classification: the relative cohomology with respect to the critical hypersurface. We compare this classification scheme with the classification of Poisson structures on surfaces which are symplectic away from a hypersurface where they fulfill a transversality assumption (b-Poisson structures). We do this using the desingularization technique introduced in [10] and extend it to bm-Nambu structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Remarks on Poisson Structures on a Plane and on Other Powers of Volume Elements, J. Soviet Math., 1989, vol. 47, no. 3, pp. 2509–2516; see also: Trudy Sem. Petrovsk., 1987, no. 12, pp. 37–46, 242.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnol’d, V. I., Critical Points of Smooth Functions, in Proc. of ICM’74 (Vancouver, BC, 1974): Vol. 1, pp. 19–39.

    MATH  Google Scholar 

  3. Braddell, R., Delshams, A., Miranda, E., Oms, C., and Planas, A., An Invitation to Singular Symplectic Geometry, Int. J. Geom. Methods Mod. Phys., 2019, vol. 16, suppl. 1, 1940008, 16 pp.

    Google Scholar 

  4. Cannas da Silva, A., Guillemin, V., and Woodward, Ch., On the Unfolding of Folded Symplectic Structures, Math. Res. Lett., 2000, vol. 7, no. 1, pp. 35–53.

    Google Scholar 

  5. Cannas da Silva, A., Guillemin, V., and Pires, A. R., Symplectic Origami, Int. Math. Res. Not. IMRN, 2011, no. 18, pp. 4252–4293.

    Google Scholar 

  6. Cannas da Silva, A., Fold-Forms for Four-Folds, J. Symplectic Geom., 2010, vol. 8, no. 2, pp. 189–203.

    Article  MathSciNet  MATH  Google Scholar 

  7. Delshams, A., Kiesenhofer, A., and Miranda, E., Examples of Integrable and Non-Integrable Systems on Singular Symplectic Manifolds, J. Geom. Phys., 2017, vol. 115, pp. 89–97.

    Article  MathSciNet  MATH  Google Scholar 

  8. Godbillon, C., Éléments de topologie algébrique, Hermann, 1971.

    MATH  Google Scholar 

  9. Guillemin, V., Miranda, E., and Pires, A.R., Symplectic and Poisson Geometry on b-Manifolds, Adv. Math., 2014, vol. 264, pp. 864–896.

    Article  MathSciNet  MATH  Google Scholar 

  10. Guillemin, V., Miranda, E., and Weitsman, J., Desingularizing bm-Symplectic Structures, Int. Math. Res. Notices, 2017, rnx126.

    Google Scholar 

  11. Guillemin, V. and Sternberg, Sh., Geometric Asymptotics, Math. Surveys, No. 14, Providence,R.I.: AMS, 1977.

    Book  MATH  Google Scholar 

  12. Martinet, J., Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble), 1970, vol. 20, fasc. 1, pp. 95–178.

    Book  MATH  Google Scholar 

  13. Martínez Torres, D., Global Classification of Generic Multi-Vector Fields of Top Degree, J. London Math. Soc. (2), 2004, vol. 69, no. 3, pp. 751–766.

    Article  MathSciNet  MATH  Google Scholar 

  14. Melrose, R. B., The Atiyah–Patodi–Singer Index Theorem, Res. Notes Math., vol. 4, Wellesley,Mass.: A. K.Peters, 1993.

    MATH  Google Scholar 

  15. Moser, J., On the Volume Elements on a Manifold, Trans. Amer. Math. Soc., 1965, vol. 120, pp. 286–294.

    Article  MathSciNet  MATH  Google Scholar 

  16. Miranda, E. and Oms, C., Contact Structures with Singularities, arXiv:1806.05638v1 (2018).

    Google Scholar 

  17. Miranda, E. and Planas, A., Classification of bm-Nambu Structures of Top Degree, C. R. Math. Acad. Sci. Paris, 2018, vol. 356, no. 1, pp. 92–96.

    Article  MathSciNet  MATH  Google Scholar 

  18. Miranda, E. and Planas, A., Equivariant Classification of bm-Symplectic Surfaces, Regul. Chaotic Dyn., 2018, vol. 23, no. 4, pp. 355–371.

    Article  MathSciNet  Google Scholar 

  19. Nambu, Y., Generalized Hamiltonian Dynamics, Phys. Rev. D (3), 1973, vol. 7, pp. 2405–2412.

    Article  MathSciNet  MATH  Google Scholar 

  20. Radko, O., A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface, J. Symplectic Geom., 2002, vol. 1, no. 3, pp. 523–542.

    Article  MathSciNet  MATH  Google Scholar 

  21. Scott, G., The Geometry of bk Manifolds, J. Symplectic Geom., 2016, vol. 14, no. 1, pp. 71–95.

    Article  MathSciNet  Google Scholar 

  22. Weinstein, A., Lectures on Symplectic Manifolds, CBMS Reg. Conf. Ser. Math., vol. 29, Providence,R.I.: AMS, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Cardona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardona, R., Miranda, E. On the Volume Elements of a Manifold with Transverse Zeroes. Regul. Chaot. Dyn. 24, 187–197 (2019). https://doi.org/10.1134/S1560354719020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354719020047

Keywords

MSC2010 numbers

Navigation