Skip to main content
Log in

Flow Regimes of a Liquid Film Carried Away by a Gas Flow in a Flat Horizontal Channel under Isothermal Conditions

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

A three-dimensional mathematical model of the flow of a liquid film carried away by a gas flow in a flat horizontal minichannel under isothermal conditions is developed. Film flow regimes in an evaporative cooling system are simulated numerically. Dependences of the development of deformation on the motion control parameters such as the Reynolds numbers for liquid and gas are studied. The hydrodynamic flow regimes found in the experiment are confirmed by the results of numerical simulation. Five different modes are thus considered, namely, channel flooding, smooth film, two-dimensional waves, three-dimensional waves, and film rupture. An analysis of the simulation results shows that the model qualitatively correctly reproduces all the features of film behavior in the studied modes. A satisfactory agreement between calculation and experiment is obtained in terms of the surface shape and film thickness as well as in terms of wavelengths and ridge passing frequencies. It is shown that, on the whole, the calculation well reproduces the onset of the development of instability in a liquid film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. A. Bar-Cohen and P. Wang, “Thermal management of on-chip hot spots,” J. Heat Transfer 134, 051017 (2012).

    Article  Google Scholar 

  2. A. Kraus, K. A. Bar-Cohen and A. A. Wative, “Cooling electric equipment,” in vol. 4 of Mechanical Engineers Handbook (Wiley, Chichester, 2015), Sec. 1. Ch. 12, pp. 451–499.

  3. D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking, VLSI,” IEEE Electron. Device Lett. EDL-2 (5), 126–129 (1981).

    Article  Google Scholar 

  4. G. Swift, A. Migliori, and J. Wheatley, “Construction of and measurements with an extremely compact cross-flow heat exchanger,” Heat Transfer Eng. 6 (2), 39–46 (1985).

    Article  Google Scholar 

  5. E. G. Colgan, B. Furman, M. Gaynes, W. S. Graham, N. C. LaBianca, J. H. Magerlein, and R. R. Schmidt, “A practical implementation of silicon microchannel coolers for high power chips,” IEEE Trans. Compon. Packag. Technol. 30 (2), 218–225 (2007).

  6. J. A. Khan, A. K. M. M. M. Morshed, and R. Fang, “Towards ultra-compact high heat flux microchannel heat sink,” Procedia Eng. 90, 11–24 (2014).

    Article  Google Scholar 

  7. S. G. Kandlikar, S. Colin, Y. Peles, S. Garimella, R. F. Pease, J. J. Brandner, and D. B. Tuckerman, “Heat transfer in microchannels—2012 status and research needs,” J. Heat Transfer 135 (9), 091017 (2013).

    Article  Google Scholar 

  8. P. Stephan and C. Brandt, “Advanced capillary structures for high performance heat pipes,” Proc. 1st Int. Conf. Microchannels Minichannels (Rochester, NY, 2003) pp. 69–75.

  9. C. Woodcock, C. Ng’oma, M. Sweet, Y. Wang, and Y. Peles, “Ultra-high heat flux dissipation with Piranha Pin Fins,” Int. J. Heat Mass Transfer 128, 504–515 (2019).

    Article  Google Scholar 

  10. M. H. Nasr, C. E. Green, P. A. Kottke, X. Zhang, T. E. Sarvey, Y. K. Joshi, M. S. Bakir, and A. G. Fedorov, “Flow regimes and convective heat transfer of refrigerant flow boiling in ultra-small clearance microgaps,” Int. J. Heat Mass Transfer 108, 1702–1713 (2017).

    Article  Google Scholar 

  11. O. A. Kabov, Yu. V. Lyulin, I. V. Marchuk, and D. V. Zaitsev, “Locally heated shear-driven liquid films in microchannels and minichannels,” Int. J. Heat Fluid Flow 28, 103–112 (2007).

    Article  Google Scholar 

  12. O. A. Kabov, D. V. Zaitsev, V. V. Cheverda, and A. Bar-Cohen, “Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels,” Exp. Therm. Fluid Sci. 35 (825), 825–831 (2011).

    Article  Google Scholar 

  13. O. Kabov, D. Zaitsev, and E. Tkachenko, “Interfacial thermal fluid phenomena in shear-driven thin liquid films,” Proc. 16th Int. Heat Transfer Conf. IHTC-16 (2018).

  14. M. Potash and P. C. Wayner, Jr., “Evaporation from a two-dimensional extended meniscus,” Int. J. Heat Mass Transfer 15, 1851–1863 (1972).

  15. P. C. Stephan and C. A. Busse, “Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls,” Int. J. Heat Mass Transfer 35, 383–391 (1992).

    Article  Google Scholar 

  16. V. S. Ajaev and O. A. Kabov, “Heat and mass transfer near contact lines on heated surfaces,” Int. J. Heat Mass Transfer 108, 918–932 (2017).

    Article  Google Scholar 

  17. A. L. Karchevsky, V. V. Cheverda, I. V. Marchuk, T. G. Ponomarenko, V. S. Sulyaeva, and O. A. Kabov, “Heat flux density evaluation in the region of contact line of drop on a sapphire surface using infrared thermography measurements,” Microgravity Sci. Technol. 33 (), 53– (2021). https://doi.org/10.1007/s12217-021-09892-6

  18. N. Schweizer and P. Stephan, “Experimental study of bubble behavior and local heat flux in pool boiling under variable gravity conditions,” Multiphase Sci. Technol. 21, 329–350 (2009).

    Article  Google Scholar 

  19. A. L. Karchevsky, I. V. Marchuk, and O. A. Kabov, “Calculation of the heat flux near the liquid–gas–solid contact line,” Appl. Math. Model. 40, 1029–1037 (2016).

    Article  MATH  Google Scholar 

  20. O. A. Kabov, D. V. Zaitsev, D. P. Kirichenko, and V. S. Ajaev, “Investigation of moist air flow near contact line using microdroplets as tracers,” Interfacial Phenom. Heat Transfer 4 (2–3), 207–216 (2016). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2017020203

  21. M. Gibbons, P. Di Marco, and A. J. Robinson, “Local heat transfer to an evaporating superhydrophobic droplet,” Int. J. Heat Mass Transfer 121, 641–652 (2018).

    Article  Google Scholar 

  22. J. Jo, J. Kim, and S. J. Kim, “Experimental investigations of heat transfer mechanisms of a pulsating heat pipe,” Energy Convers. Manage. 181, 331–341 (2019).

    Article  Google Scholar 

  23. K. Schweikert, A. Sielaff, and P. Stephan, “Heat flux during dipcoating of a superheated substrate,” Interfacial Phenom. Heat Transfer 7, 269–281 (2019).

    Article  Google Scholar 

  24. J. P. Burelbach, S. G. Bankoff, and S. H. Davis, “Nonlinear stability of evaporating/condensing liquid film,” J. Fluid Mech. 195, 463–494 (1988).

    Article  MATH  Google Scholar 

  25. O. E. Shklyaev and E. Fried, “Stability of an evaporating thin liquid film,” J. Fluid Mech. 584, 157–183 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Sultan, A. Boudaoud, and M. Ben Amar, “Diffusion-limited evaporation of thin polar liquid films,” J. Eng. Math. 50, 209–222 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Sultan, A. Boudaoud, and M. Ben Amar, “Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities,” J. Fluid Mech. 543, 183–202 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. B. Bekezhanova and O. A. Kabov, “Influence of internal energy variations of the interface on the stability of film flow,” Interfacial Phenom. Heat Transfer 4 (2–3), 133–156 (2016). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2017019451

  29. E. Ya. Gatapova and O. A. Kabov, “Shear-driven flows of locally heated liquid films,” Int. J. Heat Mass Transfer 51 (19–20), 4797–4810 (2008).

    Article  MATH  Google Scholar 

  30. R. Liu and O. A. Kabov, “Instabilities in a horizontal liquid layer in cocurrent gas flow with an evaporating interface,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85 (6), 066305– (2012). https://doi.org/10.1103/PhysRevE.85.066305

  31. Yu. O. Kabova, V. V. Kuznetsov, O. A. Kabov, T. Gambaryan-Roisman, and P. Stephan, “Evaporation of a thin viscous liquid film sheared by gas in a microchannel,” Int. J. Heat Mass Transfer 68 (), 527–541 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.019

  32. C. Redon, F. Brochard-Wyart, and F. Rondelez, “Dynamics of dewetting,” Phys. Rev. Lett. 66 (6), 715–719 (1991).

    Article  Google Scholar 

  33. V. S. Ajaev, “Instability and rupture of thin liquid films on solid substrates,” Interfacial Phenom. Heat Transfer 1 (1), 81–92 (2013).

    Article  Google Scholar 

  34. P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer-Verlag, Heidelberg, 2004).

    Book  MATH  Google Scholar 

  35. O. A. Kabov, “Breakdown of a liquid film flowing over the surface with a local heat source,” Thermophys. Aeromech. 7 (4), 513–520 (2000).

    Google Scholar 

  36. D. V. Zaitsev, O. A. Kabov, and A. R. Evseev, “Measurement of locally heated liquid film thickness by a double-fiber optical probe,” Exp. Fluids 34, 748–754 (2003).

    Article  Google Scholar 

  37. D. V. Zaitsev, A. A. Semenov, and O. A. Kabov, “Effect of viscosity on thermocapillary breakdown of a falling liquid film,” Thermophys. Aeromech. 23 (4), 625–628 (2016).

    Article  Google Scholar 

  38. N. Mulji and S. Chandra, “Rupture and dewetting of water films on solid surfaces,” J. Colloid Interface Sci. 352 (1), 194–201 (2010).

  39. S. Kim, J. Kim, and H.-Y. Kim, “Formation, growth, and saturation of dry holes in thick liquid films under vapor-mediated Marangoni effect,” Phys. Fluids. 31, 112105 (2019).

    Article  Google Scholar 

  40. D. Yu. Kochkin, D. V. Zaitsev, and O. A. Kabov, “Thermocapillary rupture and contact line dynamics in the heated liquid layers,” Interfacial Phenom. Heat Transfer 8 (1), 1–9 (2020). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2020033129

  41. C. W. Hirt and B. D. Nichols, “Volume of fluid (VoF) method for the dynamics of free boundaries,” J. Comput. Phys. 39 (), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

  42. J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys. 100 (), 335–354 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y

  43. R. L. Hoffman, “A study of the advancing interface I. Interface shape in liquid gas systems,” J. Colloid Interface Sci. 50 (2), 228–241 (1975).

  44. R. G. Cox, “The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow,” J. Fluid Mech. 168 (), 169194– (1986). https://doi.org/10.1017/S0022112086000332

  45. Y. D. Shikhmurzaev, “Moving contact lines in liquid/liquid/solid systems,” J. Fluid Mech. 334 (1), 211–249 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  46. S. F. Kistler, “Hydrodynamics of wetting,” Wettability 49, 311–431 (1993).

    Google Scholar 

  47. A. V. Minakov, “Numerical algorithm for moving boundary fluid dynamics problems and its testing,” Comput. Math. Math. Phys. 54 (10), 1560–1570 (2014). https://doi.org/10.7868/S0044466914100111

  48. A. V. Minakov, A. A. Shebeleva, A. A. Yagodnitsyna, A. V. Kovalev, and A. V. Bilsky, “Flow regimes of viscous immiscible liquids in t-type microchannels,” Chem. Eng. Technol. 42 (5), 1037–1044 (2019).

    Article  Google Scholar 

  49. E. A. Chinnov and O. A. Kabov, “Two-phase flow in pipes and capillary channels,” High Temp. 44 (5), 773–791 (2006).

    Article  Google Scholar 

  50. G. Yadigaroglu, G. Hetsroni, and G. F. Hewitt, “Flow regimes,” in Introduction to Multiphase Flow (Springer-Verlag, Heidelberg, 2018), ch. 4, pp. 95–140.

  51. E. A. Chinnov, F. V. Ron’shin, and O. A. Kabov, “Two-phase flow patterns in short horizontal rectangular microchannels,” Int. J. Multiphase Flow 80, 57–68 (2016).

    Article  Google Scholar 

  52. F. V. Ronshin, Y. A. Dementyev, E. A. Chinnov, V. V. Cheverda, and O. A. Kabov, “Experimental investigation of adiabatic gas-liquid flow regimes and pressure drop in slit microchannel,” Microgravity Sci. Technol. 31 (5), 693–707 (2019).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00695.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Minakov, A. S. Lobasov, A. V. Shebelev, D. V. Zaitsev or O. A. Kabov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minakov, A.V., Lobasov, A.S., Shebelev, A.V. et al. Flow Regimes of a Liquid Film Carried Away by a Gas Flow in a Flat Horizontal Channel under Isothermal Conditions. J. Appl. Ind. Math. 16, 490–500 (2022). https://doi.org/10.1134/S1990478922030139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478922030139

Keywords

Navigation