Skip to main content
Log in

Coulomb distortion of relativistic electrons in the nuclear electrostatic field

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Continuum states of the Dirac equation are calculated numerically for the electrostatic field generated by the charge distribution of an atomic nucleus. The behavior of the wave functions of an incoming electron with given asymptotic momentum in the nuclear region is discussed in detail and the results are compared to different approximations used in the data analysis for quasielastic electron scattering off medium and highly charged nuclei. It is found that most of the approximations provide an accurate description of the electron wave functions in the range of electron energies above 100 MeV typically used in experiments for quasielastic electron scattering off nuclei only near the center of the nucleus. It is therefore necessary that the properties of exact wave functions are investigated in detail in order to obtain reliable results in the data analysis of quasielastic (e, e'p) knockout reactions or inclusive quasielastic (e, e') scattering. Detailed arguments are given that the effective momentum approximation with a fitted potential parameter is a viable method for a simplified treatment of Coulomb corrections for certain kinematical regions used in experiments. Numerical calculations performed within the framework of the single-particle shell model for nucleons lead to the conclusion that our results are incompatible with calculations performed about a decade ago, where exact electron wave functions were used in order to calculate Coulomb corrections in distorted-wave Born approximation. A discussion of the exact solutions of the Dirac equation for free electrons in a Coulomb field generated by a point-like charge and some details relevant for the numerical calculations are given in the appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Whitney, I. Sick, J.R. Ficenec, R.D. Kephart, W.P. Trower, Phys. Rev. C 9, 2230 (1974).

    Google Scholar 

  2. O. Benhar, A. Fabrocini, S. Fantoni, I. Sick, Phys. Lett. B 343, 47 (1995).

    Google Scholar 

  3. J. Jourdan, Nucl. Phys. A 604, 117 (1996).

    Google Scholar 

  4. D. Day, J.S. McCarthy, T.W. Donnelly, I. Sick, Annu. Rev. Nucl. Part. Sci. 40, 357 (1990).

    Google Scholar 

  5. D.B. Day, J.S. McCarthy, Z.E. Meziani, R.C. Minehart, R.M. Sealock, S.T. Thornton, J. Jourdan, I. Sick, B.W. Filippone, R.D. McKeown, R.G. Milner, D.H. Potterveld, Z. Szalata, Phys. Rev. C 40, 1011 (1989).

    Google Scholar 

  6. Mini-Workshop on Coulomb Corrections, Thomas Jefferson National Accelerator Facility, March 28, 2005

  7. J. Morgenstern, Z.E. Meziani, Phys. Lett. B 515, 269 (2001).

    Google Scholar 

  8. K.S. Kim, L.E. Wright, Y. Jin, D.W. Kosik, Phys. Rev. C 54, 2515 (1996).

    Google Scholar 

  9. J.M. Udias, J.R. Vignote, E. Moya de Guerra, A. Escuderos, J.A. Caballero, Recent developments in relativistic models for exclusive $A(e,e'p)B$ reactions, in Proceedings of the 5th Workshop on ``e-m Induced Two-Hadron Emission'', Lund, June 13-16, 2001, http://arxiv.org/abs/ nucl-th/0109077.

  10. J.M. Udias, P. Sarriguren, E. Moya de Guerra, E. Garrido, J.A. Caballero, Phys. Rev. C 48, 2731 (1993).

    Google Scholar 

  11. G. Co', J. Heisenberg, Phys. Lett. B 197, 489 (1987).

    Google Scholar 

  12. F. Lenz, PhD Thesis, Freiburg, Germany, 1971.

  13. J. Knoll, Nucl. Phys. A 223, 462 (1974).

    Google Scholar 

  14. C. Giusti, F.D. Pacati, Nucl. Phys. A 473, 717 (1987).

    Google Scholar 

  15. F. Lenz, R. Rosenfelder, Nucl. Phys. A 176, 513 (1971).

    Google Scholar 

  16. C. Giusti, F.D. Pacati, Nucl. Phys. A 485, 461 (1988).

    Google Scholar 

  17. M. Traini, S. Turck-Chieze, A. Zghiche, Phys. Rev. C 38, 2799 (1988).

    Google Scholar 

  18. M. Traini, M. Covi, Nuovo Cimento A 108, 723 (1995).

    Google Scholar 

  19. R. Rosenfelder, Ann. Phys. (N.Y.) 128, 188 (1980).

    Google Scholar 

  20. M. Levy, J. Sucher, Phys. Rev. 186, 1656 (1969).

    Google Scholar 

  21. R.L. Sugar, R. Blankenbecler, Phys. Rev. 183, 1387 (1969).

    Google Scholar 

  22. S.J. Wallace, Ann. Phys. (N.Y.) 78, 190 (1973).

    Google Scholar 

  23. S.J. Wallace, J.A. McNeil, Phys. Rev. D 16, 3565 (1977).

    Google Scholar 

  24. H. Abarbanel, C. Itzykson, Phys. Rev. Lett. 23, 53 (1969).

    Google Scholar 

  25. A. Aste, K. Hencken, J. Jourdan, I. Sick, D. Trautmann, Nucl. Phys. A 743, 259 (2004).

    Google Scholar 

  26. A. Aste, J. Jourdan, Europhys. Lett. 67, 753 (2004).

    Google Scholar 

  27. D.R. Yennie, F.L. Boos, D.G. Ravenhall, Phys. Rev. 137, B882 (1965).

  28. M. Traini, Nucl. Phys. A 694, 325 (2001).

    Google Scholar 

  29. Y. Jin, D.S. Onley, L.E. Wright, Phys. Rec. C 45, 1311 (1992).

    Google Scholar 

  30. Y. Jin, D.S. Onley, L.E. Wright, Phys. Rev. C 50, 168 (1994).

    Google Scholar 

  31. J. Jourdan, in Workshop on Electron-Nucleus Scattering, edited by O. Benhar, A. Fabrocini (Edizioni ETS, Pisa, 1997) p. 319.

  32. D.R. Yennie, D.G. Ravenhall, R.N. Wilson, Phys. Rev. 95, 500 (1954).

    Google Scholar 

  33. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Google Scholar 

  34. G. Fricke, C. Bernhardt, K. Heilig, L.A. Schaller, L. Schellenberg, E.B. Shera, C.W. de Jager, At. Data Nucl. Data Tables 60, 177 (1995).

    Google Scholar 

  35. P. Guèye, M. Bernheim, J.F. Danel, J.E. Ducret, L. Lakéhal-Ayat, J.M. Le Goff, A. Magnon, C. Marchand, J. Morgenstern, J. Marroncle, P. Vernin, A. Zghiche-Lakéhal-Ayat, Phys. Rev. C 60, 044308 (1999).

    Google Scholar 

  36. A. Zghiche, J.F. Danel, M. Bernheim, M.K. Brussel, G.P. Capitani, E. De Sanctis, S. Frullani, F. Garibaldi, A. Gerard, J.M. Le Goff, A. Magnon, C. Marchand, Z.E. Meziani, J. Morgenstern, J. Picard, D. Reffay-Pikeroen, M. Traini, S. Turck-Chieze, P. Vernin, Nucl. Phys. A 572, 513 (1994)

    Google Scholar 

  37. A. Aste, K. Hencken, D. Trautmann, Eur. Phys. J. A 21, 161 (2004).

    Google Scholar 

  38. H.C. Pauli, U. Raff, Comput. Phys. Commun. 9, 392 (1975).

    Google Scholar 

  39. J. Knoll, Nucl. Phys. A 201, 289 (1973).

    Google Scholar 

  40. J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).

  41. D. Trautmann, G. Baur, F. Rösel, J. Phys. B 16, 3005 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aste.

Additional information

G. Orlandini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aste, A., von Arx, C. & Trautmann, D. Coulomb distortion of relativistic electrons in the nuclear electrostatic field. Eur. Phys. J. A 26, 167–178 (2005). https://doi.org/10.1140/epja/i2005-10169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10169-0

PACS.

Navigation