Skip to main content
Log in

A surprising method for polarising antiprotons

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 05 January 2009

Abstract.

We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to v/c ≈ 0.002 the cross-section for spin-flip is as large as about 2 . 1013 barn as shown by new QED calculations of the triple spin cross-sections. Two possibilities for providing a positron source with sufficient flux density are presented. A polarised positron beam with a polarisation of 0.70 and a flux density of approximately 1.5 . 1010 /(mm2 s) appears to be feasible by means of a radioactive 11C dc-source. A more involved proposal is the production of polarised positrons by pair production with circularly polarised photons. It yields a polarisation of 0.76 and requires the injection into a small storage ring. Such polariser sources can be used at low (100MeV) as well as at high (1GeV) energy storage rings providing a time of about one hour for polarisation build-up of about 1010 antiprotons to a polarisation of about 0.18. A comparison with other proposals show a gain in the figure of merit by a factor of about ten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Klempt, C. Batty, J.M. Richard, Phys. Rep. 413, 197 (2005) [arXiv:hep-ex/0501020].

    Article  ADS  Google Scholar 

  2. Th. Walcher, Annu. Rev. Nucl. Part. Sci. 38, 67 (1988).

    Article  ADS  Google Scholar 

  3. E. Klempt, F. Bradamante, A. Martin, J.M. Richard, Phys. Rep. 368, 119 (2002).

    Article  ADS  Google Scholar 

  4. V. Barone, A. Drago, P.G. Ratcliffe, Phys. Rep. 359, 1 (2002) [arXiv:hep-ph/0104283].

    Article  MATH  ADS  Google Scholar 

  5. P. Lenisa, F. Rathmann, Spokespersons of the $\mathcal{PAX}$ Collaboration, Technical Proposal, Forschungszentrum Jülich 2005, available from www.fz-juelich.de/ikp/pax.

  6. A.D. Krisch, O. Chamberlain (Editors), Proceedings of the Workshop on Polarized Antiprotons, Bodega Bay 1985, AIP Conf. Proc., Vol. 145 (AIP, New York, 1986).

  7. F. Rathmann, Phys. Rev. Lett. 71, 1379 (1993).

    Article  ADS  Google Scholar 

  8. K. Zapfe, Rev. Sci. Instrum. 66, 28 (1995).

    Article  ADS  Google Scholar 

  9. K. Zapfe, Nucl. Instrum. Methods A 368, 627 (1996).

    Article  Google Scholar 

  10. H.O. Meyer, Phys. Rev. E 50, 1485 (1994).

    Article  ADS  Google Scholar 

  11. C.J. Horowitz, H.O. Meyer, Phys. Rev. Lett. 72, 3981 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Rathmann, Phys. Rev. Lett. 94, 014801 (2005).

    Article  ADS  Google Scholar 

  13. C. Bovet, R. Gourian, I. Gumowski, K.H. Reich, CERN Report No. CERN/MPS-SI/Int. DL/70/4, 1970.

  14. H. Arenhövel, Eur. Phys. J. A 34, 303 (2007) arXiv:nucl-th/0706.3576.

    Article  ADS  Google Scholar 

  15. H. Arenhövel, to be published in Eur. Phys. J. A.

  16. A.I. Milstein, V.M. Strakhovenko, Phys. Rev. E 72, 066503 (2005) [arXiv:physics/0504183].

    Article  ADS  Google Scholar 

  17. J.H. Scofield, Phys. Rev. 113, 1599 (1959).

    Article  ADS  Google Scholar 

  18. J.H. Scofield, Phys. Rev. 141, 1352 (1966).

    Article  ADS  Google Scholar 

  19. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).

    Article  ADS  Google Scholar 

  20. R.G. Arnold, C.E. Carlson, F. Gross, Phys. Rev. C 23, 363 (1981).

    Article  ADS  Google Scholar 

  21. H. Arenhövel, W. Leidemann, E.L. Tomusiak, Z. Phys. A 331, 123 (1988).

    Google Scholar 

  22. D.I. Glazier, Eur. Phys. J. A 24, 101 (2005) [arXiv:nucl-ex/0410026].

    Article  ADS  Google Scholar 

  23. Jefferson Lab Hall A Collaboration (C.F. Perdrisat), Eur. Phys. J. A 17, 317 (2003).

    Article  ADS  Google Scholar 

  24. A. Messiah, Mécanique Quantique (Dunod, Paris, 1969).

  25. J. Van House, P.W. Zitzewitz, Phys. Rev. A 29, 96 (1984).

    Article  ADS  Google Scholar 

  26. F.M. Jacobsen, J. Appl. Phys. 67, 575 (1990).

    Article  ADS  Google Scholar 

  27. C. VanDeCasteele, Nucl. Instrum. Methods A 236, 558 (1985).

    Article  ADS  Google Scholar 

  28. A. Nagler, Proceedings of LINAC 2006, Oak Ridge National Laboratory, Knoxville, Tennessee USA, p. 109, http://cern.ch/AccelConf/l06/PAPERS/ MOP054.PDF, published by Joint Accelerator Conferences Website, http://www.JACOW.org.

  29. D.A. Fischer, Phys. Rev. B 33, 4479 (1986).

    Article  ADS  Google Scholar 

  30. I.N. Meshkov, Nucl. Instrum. Methods A 441, 255 (2000).

    Article  ADS  Google Scholar 

  31. I.N. Meshkov, A.O. Sidorin, Nucl. Instrum. Methods A 391, 216 (1997).

    Article  ADS  Google Scholar 

  32. H. Olsen, L.C. Maximon, Phys. Rev. 114, 887 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Alley, Nucl. Instrum. Methods A 365, 1 (1995).

    Article  ADS  Google Scholar 

  34. A. Brachmann, in Proceedings of the 16th International Spin Physics Symposium, SPIN04, Trieste 2004, edited by K. Aulenbacher, F. Bradamante, A. Bessan, A. Martin (World Scientific Publisher, Singapore, 2005).

  35. R. Corsini, Proceedings 9th European Accelerator Conference, Lucerne (2004), p. 39.

  36. K. Aulenbacher, Nucl. Instrum. Methods A 391, 498 (1997).

    Article  ADS  Google Scholar 

  37. K. Aulenbacher, Proceedings of the 16th International Spin Physics Symposium, SPIN04, Trieste 2004, edited by K. Aulenbacher, F. Bradamante, A. Bessan, A. Martin (World Scientific Publisher, Singapore, 2005) p. 975.

  38. J.W. Motz, H.A. Olsen, H.W. Koch, Rev. Mod. Phys. 41, 581 (1969).

    Article  ADS  Google Scholar 

  39. G.R. Lynch, O.I. Dahl, Nucl. Instrum. Methods B 58, 6 (1991).

    Article  ADS  Google Scholar 

  40. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988).

    Article  ADS  Google Scholar 

  41. A.P. Potylitsin, Nucl. Instrum. Methods A 398, 395 (1997).

    Article  ADS  Google Scholar 

  42. R. Barday, in Proceedings of the 17th International Spin Physics Symposium, Spin06, Kyoto 2006, AIP Conf. Proc. 915, 1019 (2007).

    Article  ADS  Google Scholar 

  43. Y.S. Derbenev, A.M. Kondratenko, Sov. Phys. JETP 37, 968 (1973).

    ADS  Google Scholar 

  44. Y. Shatunov, AIP Conf. Proc. 915, 153 (2007).

    Article  ADS  Google Scholar 

  45. N.N. Nikolaev, F.F. Pavlov, arXiv:hep-ph/0601184.

  46. N. Nikolaev, F. Pavlov, AIP Conf. Proc. 915, 932 (2007) [arXiv:hep-ph/0701175].

    Article  ADS  Google Scholar 

  47. T. Walcher, H. Arenhoevel, K. Aulenbacher, R. Barday, A. Jankowiak, arXiv:0706.3765 [physics.acc-ph].

  48. H. Poth, Phys. Rep. 196, 135 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

E. De Sanctis

An erratum to this article can be found at http://dx.doi.org/10.1140/epja/i2008-10705-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walcher, T., Arenhövel, H., Aulenbacher, K. et al. A surprising method for polarising antiprotons. Eur. Phys. J. A 34, 447–461 (2007). https://doi.org/10.1140/epja/i2007-10462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2007-10462-x

PACS.

Navigation