Skip to main content
Log in

The high-acceptance dielectron spectrometer HADES

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18° to 85° , a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range ( 0.1 < p < 1.0 GeV/c . This paper describes the main features and the performance of the detector system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000).

    Google Scholar 

  2. R. Schicker, Nucl. Instrum. Methods A 380, 586 (1996).

    Google Scholar 

  3. V. Metag, Prog. Part. Nucl. Phys. 30, 75 (1993).

    Google Scholar 

  4. P. Salabura, Prog. Part. Nucl. Phys. 53, 49 (2004).

    Google Scholar 

  5. J. Friese, Prog. Part. Nucl. Phys. 42, 235 (1999).

    Google Scholar 

  6. A. Yegneswaran, Nucl. Instrum. Methods A 290, 61 (1990).

    Google Scholar 

  7. TOSCA part of OPERA 2D and 3D, Vector Fields, UK, www.vectorfields.com.

  8. Linde Kryotechnik AG, Daettlikonerstrasse 5, PO-Box, CH-8422 Pfungen, Switzerland.

  9. K. Zeitelhack, Nucl. Instrum. Methods A 433, 201 (1999).

    Google Scholar 

  10. J. Friese, Nucl. Instrum. Methods A 438, 86 (1999).

    Google Scholar 

  11. A. Kastenmüller, Nucl. Instrum. Methods A 433, 438 (1999).

    Google Scholar 

  12. J. Friese, Nucl. Instrum. Methods A 502, 241 (2003).

    Google Scholar 

  13. J. Friese, PEGASUS, the RICH gas system description and manual, internal note (2005).

  14. J. Lehnert, Nucl. Instrum. Methods A 502, 261 (2003).

    Google Scholar 

  15. W. Beusch, Internal Note 4, CERN/ECP/MIP (1993).

  16. J. Lehnert, Nucl. Instrum. Methods A 433, 268 (1999).

    Google Scholar 

  17. R. Dübgen, G. Popp, Z. Werkstofftech. 15, 331 (1984).

    Google Scholar 

  18. P. Maier-Komor, Nucl. Instrum. Methods A 438, 152 (1999).

    Google Scholar 

  19. P. Maier-Komor, Nucl. Instrum. Methods A 480, 65 (2002).

    Google Scholar 

  20. L. Fabbietti, Nucl. Instrum. Methods A 502, 256 (2003).

    Google Scholar 

  21. C. Garabatos, Nucl. Instrum. Methods A 412, 38 (1998).

    Google Scholar 

  22. H. Bokemeyer, Nucl. Instrum. Methods A 477, 397 (2002).

    Google Scholar 

  23. C. Müntz, Nucl. Instrum. Methods A 535, 242 (2004).

    Google Scholar 

  24. K. Kanaki, IEEE Trans. Nucl. Sci. 51, 939 (2004).

    Google Scholar 

  25. C. Lippmann, Aufbau und Inbetriebnahme eines Gasqualitätsmonitors für die HADES Driftkammern, Diploma Thesis (Johann Wolfgang Goethe-Universität Frankfurt, 2000).

  26. E. Badura, Part. Nucl. Lett. 1, 73 (2000).

  27. M. Newcomer, IEEE Trans. Nucl. Sci. 40, 630 (1993).

    Google Scholar 

  28. J. Markert, Proceedings of the XL International Winter Meeting of Nuclear Physics, Bormio, 2002, edited by I. Iori, Ricerca Scientifica ed Educazione Permanente, Suppl. No. 119 (2002) p. 123.

  29. A. Abashian, Nucl. Instrum. Methods A 479, 117 (2002).

    Google Scholar 

  30. B. Aubert, Nucl. Instrum. Methods A 479, 1 (2002).

    Google Scholar 

  31. W.M. Yao, Review of Particle Properties, Section “Particle detectors”, J. Phys. G 33, 1 (2006).

    Google Scholar 

  32. C. Agodi, Nucl. Instrum. Methods A 492, 14 (2002).

    Google Scholar 

  33. F. Krizek, Study of inclusive electron-positron pair production of ${Ar} + {KCl}$ at 1.756 AGeV, PhD Thesis (Czech Technical University Prague, 2008).

  34. H. Alvarez-Pol, Nucl. Instrum. Methods A 535, 277 (2004).

    Google Scholar 

  35. S. Spataro, Characterization of the HADES Spectrometer in $pp$ Collisions at 2.2 GeV: Elastic Scattering and Exclusive $\eta$ Reconstruction, PhD Thesis (Università degli Studi di Catania, 2002).

  36. G.D. Alekseev, Nucl. Instrum. Methods 177, 385 (1980).

    Google Scholar 

  37. M. Atac, Nucl. Instrum. Methods 200, 345 (1982).

    Google Scholar 

  38. A. Balanda, Nucl. Instrum. Methods A 531, 445 (2004).

    Google Scholar 

  39. A. Balanda, Nucl. Instrum. Methods A 417, 360 (1998).

    Google Scholar 

  40. GEANT3 Detector description and simulation tool, CERN long writeup W5013 (1993).

  41. R.S. Simon, Progr. Part. Nucl. Phys. 42, 247 (1999).

    Google Scholar 

  42. J. Díaz, Nucl. Instrum. Methods A 478, 511 (2002).

    Google Scholar 

  43. E. Berdermann, Diamond Relat. Mater. 10, 1770 (2001).

  44. M. Traxler, IEEE Trans. Nucl. Sci. 47, 376 (2000).

    Google Scholar 

  45. M. Traxler, Real time dilepton selection for the HADES spectrometer, PhD Thesis (Justus-Liebig-Universität Gießen, 2001).

  46. J. Lehnert, Echtzeit-Mustererkennung zum Elektronennachweis mit einem RICH-Detektor in relativistischen Schwerionenkollisionen, PhD Thesis (Justus-Liebig-Universität Gießen, 2000).

  47. I. Fröhlich, IEEE Trans. Nucl. Sci. 55, 59 (2008).

    Google Scholar 

  48. A. Akindinov, Nucl. Instrum. Methods A 533, 178 (2004).

    Google Scholar 

  49. A. Toia, Nucl. Instrum. Methods A 502, 270 (2003).

    Google Scholar 

  50. http://www.aps.anl.gov/epics/index.php.

  51. M. Sánchez, Momentum reconstruction and pion production analysis in the HADES spectrometer at GSI, PhD Thesis (University of Santiago de Compostela, 2003).

  52. R. Brun, F. Rademakers, ROOT, an object-oriented data analysis framework, Nucl. Instrum. Methods A 389, 81 (1997).

  53. Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065, USA.

  54. The Qt class library, Trolltech AS, PO Box 4332 Oslo, Norway.

  55. M. Kagarlis, Pluto$^{++}$, a Monte-Carlo simulation tool for hadronic physics, GSI internal report 2000-03, unpublished.

  56. I. Fröhlich, XII International Workshop on Advanced Computing and Analysis Techniques for Physics Research, PoS 076 (2008) see also arXiv:nucl-ex/0708.2382.

  57. G. Agakichiev, V. Pechenov, Part. Nucl. Lett. 2, 1001 (2000).

    Google Scholar 

  58. GARFIELD, Simulation of gaseous detectors, http://garfield.web.cern.ch/garfield.

  59. J. Markert, Untersuchung zum Ansprechverhalten der Vieldraht-Driftkammern niedriger Massenbelegung des HADES Experiments, PhD Thesis (Johann Wolfgang Goethe-Universität Frankfurt, 2005).

  60. A. Ierusalimov, HADES internal report (2002).

  61. A. Rustamov, Exclusive $\eta$ Meson Reconstruction in Proton-Proton Collisions at 2.2 GeV with the HADES Spectrometer and High Resolution Tracking, PhD Thesis (Technische Universität Darmstadt, Darmstadt, 2006).

  62. H. Wind, Nucl. Instrum. Methods 115, 431 (1974).

    Google Scholar 

  63. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, 3rd edition (Cambridge University Press, 2007).

  64. A. Sadovsky, Investigation of $K^+$ meson production in ${C} + {C}$ collisions at $2$ AGeV with HADES, PhD Thesis (Technische Universität Dresden, 2007) ISSN 1437-322X.

  65. R. Barlow, Recommended Statistical Procedures for BABAR, BABAR analysis document, No. 318 (2002), www.slac.stanford.edu/BFROOT/www/Statistics/ Report/report.pdf, unpublished.

  66. A. Schmah, Proceedings of the International Nuclear Physics Conference, Tokyo, 2007, edited by S. Nagamiya (Elsevier, 2008).

  67. B. Hommez, Nucl. Instrum. Methods A 502, 294 (2003).

    Google Scholar 

  68. S. Bass, Prog. Part. Nucl. Phys. 41, 225 (1998).

    Google Scholar 

  69. The HADES Collaboration (G. Agakichiev), Eur. Phys. J. A 40, 45 (2009).

  70. G. Agakichiev, arXiv:nucl-ex/0902.3487v1, submitted to Phys. Rev. C.

  71. P. Crochet, P. Braun-Munzinger, Nucl. Instrum. Methods A 484, 564 (2002).

    Google Scholar 

  72. G. Agakichiev, Phys. Rev. Lett. 98, 052302 (2007).

    Google Scholar 

  73. G. Agakichiev, Phys. Lett. B 663, 43 (2008).

    Google Scholar 

  74. R. Shyam, U. Mosel, Phys. Rev. C 67, 065202 (2003)

    Google Scholar 

  75. A.I. Titov, B. Kämpfer, Phys. Rev. C 76, 065211 (2007)

    Google Scholar 

  76. K. Schmidt, E. Santini, S. Vogel, C. Sturm, M. Bleicher, H. Stöcker, arXiv:nucl-th/0811.4073

  77. M.F.M. Lutz, B. Friman, M. Soyeur, Nucl. Phys. A 713, 97 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P. Salabura.

Additional information

H. Gaó

Rights and permissions

Reprints and permissions

About this article

Cite this article

The HADES Collaboration., Agakichiev, G., Agodi, C. et al. The high-acceptance dielectron spectrometer HADES. Eur. Phys. J. A 41, 243–277 (2009). https://doi.org/10.1140/epja/i2009-10807-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2009-10807-5

PACS

Navigation