Skip to main content
Log in

Magnetized color flavor locked state and compact stars

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  2. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  3. B.C. Barrois, Nucl. Phys. B 129, 390 (1977)

    Article  ADS  Google Scholar 

  4. D. Bailin, A. Love, Phys. Rep. 107, 325 (1984)

    Article  ADS  Google Scholar 

  5. M.G. Alford, K. Rajagopal, F. Wilczek, Nucl. Phys. B 537, 443 (1999)

    Article  ADS  Google Scholar 

  6. T. Schafer, Nucl. Phys. B 575, 269 (2000)

    Article  ADS  Google Scholar 

  7. I.A. Shovkovy, L.C.R. Wijewardhana, Phys. Lett. B 470, 189 (1999)

    Article  ADS  Google Scholar 

  8. M.G. Alford, K. Rajagopal, S. Reddy, F. Wilczek, Phys. Rev. D 64, 074017 (2001)

    Article  ADS  Google Scholar 

  9. K. Rajagopal, F. Wilczek, Phys. Rev. Lett. 86, 3492 (2001)

    Article  ADS  Google Scholar 

  10. M. Alford, K. Rajagopal, JHEP 0206, 031 (2002)

    Article  ADS  Google Scholar 

  11. M.G. Alford, A. Schmitt, K. Rajagopal, T. Schafer, Rev. Mod. Phys. 80, 1455 (2008)

    Article  ADS  Google Scholar 

  12. M. Alford, M. Braby, M.W. Paris, S. Reddy, Astrophys. J. 629, 969 (2005)

    Article  ADS  Google Scholar 

  13. R. Duncan, C. Thompson, Astron. J. 32, L9 (1992)

    ADS  Google Scholar 

  14. C. Kouveliotou et al., Nature 393, 235 (1998)

    Article  ADS  Google Scholar 

  15. L. Dong, S.L. Shapiro, Astrophys. J. 383, 745 (1991)

    Article  ADS  Google Scholar 

  16. M.G. Alford, J. Berges, K. Rajagopal, Nucl. Phys. B 571, 269 (2000)

    Article  ADS  Google Scholar 

  17. E.V. Gorbar, Phys. Rev. D 62, 014007 (2000)

    Article  ADS  Google Scholar 

  18. E.J. Ferrer, V. de la Incera, C. Manuel, Phys. Rev. Lett. 95, 152002 (2005)

    Article  ADS  Google Scholar 

  19. E.J. Ferrer, V. de la Incera, C. Manuel, Nucl. Phys. B 747, 88 (2006)

    Article  ADS  Google Scholar 

  20. E.J. Ferrer, V. de la Incera, Phys. Rev. Lett. 97, 122301 (2006)

    Article  ADS  Google Scholar 

  21. E.J. Ferrer, V. de la Incera, Phys. Rev. D 76, 045011 (2007)

    Article  ADS  Google Scholar 

  22. K. Fukushima, H.J. Warringa, Phys. Rev. Lett. 100, 032007 (2008)

    Article  ADS  Google Scholar 

  23. J.L. Noronha, I.A. Shovkovy, Phys. Rev. D 76, 105030 (2007)

    Article  ADS  Google Scholar 

  24. M.G. Alford, A. Sedrakian, J. Phys. G 37, 075202 (2010)

    Article  ADS  Google Scholar 

  25. R. González Felipe, A. Pérez Martínez, J. Phys. G 36, 075202 (2009)

    Article  Google Scholar 

  26. N. Itoh, Prog. Theor. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  27. P. Hansel, J.L. Zdunik, R. Schaeffer, Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  28. G. Lugones, J.E. Horvath, Phys. Rev. D 66, 074017 (2002)

    Article  ADS  Google Scholar 

  29. G. Lugones, J.E. Horvath, Astron. Astrophys. 403, 173 (2003)

    Article  ADS  Google Scholar 

  30. H. Quaintrell et al., Astron. Astrophys. 401, 313 (2003)

    Article  ADS  Google Scholar 

  31. D.J. Nice, E.M. Spalver, I.H. Stairs, O. Löhmer, A. Jessner, M. Kramer, J.M. Cordes, Astrophys. J. 634, 1242 (2005)

    Article  ADS  Google Scholar 

  32. R.X. Xu, Adv. Space Res. 40, 1453 (2007)

    Article  ADS  Google Scholar 

  33. M. Buballa, I.A. Shovkovy, Phys. Rev. D 72, 097501 (2005)

    Article  ADS  Google Scholar 

  34. R. González Felipe, A. Pérez Martínez, H. Pérez Rojas, M.G. Orsaria, Phys. Rev. C 77, 015807 (2008)

    Article  ADS  Google Scholar 

  35. J.S. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. E. Farhi, R.L. Jaffe, Phys. Rev. D 30, 2379 (1984)

    Article  ADS  Google Scholar 

  37. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  38. J. Cottam, F. Paerels, M. Mendez, Nature 420, 51 (2002)

    Article  ADS  Google Scholar 

  39. S. Reddy, M. Sadzikowski, M. Tachibana, Nucl. Phys. A 714, 337 (2003)

    Article  ADS  Google Scholar 

  40. J. Madsen, Phys. Rev. Lett. 85, 10 (2000)

    Article  ADS  Google Scholar 

  41. M.G. Alford, J.A. Bowers, K. Rajagopal, Phys. Rev. D 63, 074016 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Wambach

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Felipe, R., Manreza Paret, D. & Pérez Martınez, A. Magnetized color flavor locked state and compact stars. Eur. Phys. J. A 47, 1 (2011). https://doi.org/10.1140/epja/i2011-11001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11001-0

Keywords

Navigation