Skip to main content
Log in

Bottomonia in the quark-gluon plasma and their production at RHIC and LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the production of bottomonium states in heavy-ion reactions at collider energies available at RHIC and LHC. We employ an earlier constructed rate equation approach which accounts for both suppression and regeneration mechanisms in the quark-gluon plasma (QGP) and hadronization phases of the evolving thermal medium. Our previous predictions utilizing two limiting cases of strong and weak bottomonium binding in the QGP are updated by i) checking the compatibility of the pertinent spectral functions with lattice-QCD results for euclidean correlators, ii) adapting the initial conditions of the rate equation by updating bottom-related input cross-sections and the charged-particle multiplicity of the fireball, and iii) converting our calculations into observables as recently measured by the STAR and CMS experiments. Our main findings are a preference for strong ϒ binding as well as a significant regeneration component at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rapp, D. Blaschke, P. Crochet, Prog. Part. Nucl. Phys. 65, 209 (2010).

    Article  ADS  Google Scholar 

  2. L. Kluberg, H. Satz, arXiv:0901.3831 [hep-ph].

  3. P. Braun-Munzinger, J. Stachel, arXiv:0901.2500 [nucl-th].

  4. J.F. Gunion, R. Vogt, Nucl. Phys. B 492, 301 (1997).

    ADS  Google Scholar 

  5. D. Pal, B.K. Patra, D.K. Srivastava, Eur. Phys. J. C 17, 179 (2000).

    Article  ADS  Google Scholar 

  6. V.P. Goncalves, Phys. Lett. B 518, 79 (2001).

    Article  ADS  Google Scholar 

  7. L. Grandchamp, S. Lumpkins, D. Sun, H. van Heesa, R. Rapp, Phys. Rev. C 73, 064906 (2006).

    Article  ADS  Google Scholar 

  8. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A 789, 334 (2007).

    Article  ADS  Google Scholar 

  9. Y. Liu, B. Chen, N. Xu, P. Zhuang, Phys. Lett. B 697, 32 (2011).

    Article  ADS  Google Scholar 

  10. CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 107, 052302 (2011).

    Article  ADS  Google Scholar 

  11. CMS Collaboration (S. Chatrchyan), arXiv:1201.5069 [nucl-ex], The CMS Collaboration, Physics Analysis Summary HIN-10-006 (2011) Quarkonium production in PbPb collisions at √sNN TeV.

  12. STAR Collaboration (R. Reed et al.), J. Phys. G: Nucl. Part. Phys. 38, 124185 (2011).

    Article  ADS  Google Scholar 

  13. M. Strickland, Phys. Rev. Lett. 107, 132301 (2011).

    Article  ADS  Google Scholar 

  14. F. Brezinski, G. Wolschin, Phys. Lett. B 707, 534 (2012).

    Article  ADS  Google Scholar 

  15. A. Jakovac, P. Petreczky, K. Petrov, A. Velytsky, Phys. Rev. D 75, 014506 (2007).

    Article  ADS  Google Scholar 

  16. G. Aarts, S. Kim, M.P. Lombardo, M.B. Oktay, S.M. Ryan, D.K. Sinclair, J.-I. Skullerud, Phys. Rev. Lett. 106, 061602 (2011).

    Article  ADS  Google Scholar 

  17. G. Aarts et al., JHEP 11, 103 (2011).

    Article  ADS  Google Scholar 

  18. F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988).

    Article  ADS  Google Scholar 

  19. X. Zhao, R. Rapp, Phys. Rev. C 82, 064905 (2010).

    Article  ADS  Google Scholar 

  20. F. Riek, R. Rapp, Phys. Rev. C 82, 035201 (2010).

    Article  ADS  Google Scholar 

  21. M.E. Peskin, Nucl. Phys. B 156, 365 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979).

    Article  ADS  Google Scholar 

  23. L. Grandchamp, R. Rapp, Phys. Lett. B 523, 60 (2001).

    Article  ADS  Google Scholar 

  24. F. Riek, R. Rapp, New J. Phys. 13, 045007 (2011).

    Article  ADS  Google Scholar 

  25. N. Brambilla, M.A. Escobedo, J. Ghiglieri, A. Vairo, JHEP 12, 116 (2011).

    Article  ADS  Google Scholar 

  26. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 03, 054 (2007).

    Article  ADS  Google Scholar 

  27. N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008).

    Article  ADS  Google Scholar 

  28. L. Grandchamp, R. Rapp, G.E. Brown, Phys. Rev. Lett. 92, 212301 (2004).

    Article  ADS  Google Scholar 

  29. R. Rapp, H. van Hees, in Quark-Gluon Plasma 4, edited by R. Hwa, X.N. Wang (World Scientific, Singapore, 2010) p. 111, and LANL eprint arXiv:0903.1096 [hep-ph].

  30. L. Grandchamp, R. Rapp, Nucl. Phys. A 709, 415 (2002).

    Article  ADS  Google Scholar 

  31. H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008).

    Article  ADS  Google Scholar 

  32. X. Zhao, R. Rapp, Nucl. Phys. A 859, 114 (2011).

    Article  ADS  Google Scholar 

  33. M. He, R.J. Fries, R. Rapp, Phys. Rev. C 85, 044911 (2012).

    Article  ADS  Google Scholar 

  34. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 11, 077 (2010).

    Article  ADS  Google Scholar 

  35. HotQCD Collaboration (W. Söldner et al.), PoS LATTICE2010, 215 (2010).

    Google Scholar 

  36. B. Wu, P. Romatschke, Int. J. Mod. Phys. C 22, 1317 (2011).

    Article  ADS  MATH  Google Scholar 

  37. P.B. Gossiaux, S. Vogel, H. van Hees, J. Aichelin, R. Rapp, M. He, M. Bluhm, arXiv:1102.1114 [hep-ph].

  38. M. He, R.J. Fries, R. Rapp, arXiv:1106.6006 [nucl-th].

  39. STAR Collaboration (H. Liu et al.), Nucl. Phys. A 830, 235C (2009).

    Article  ADS  Google Scholar 

  40. STAR Collaboration (R. Reed et al.), Nucl. Phys. A 855, 440 (2011).

    Article  ADS  Google Scholar 

  41. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. D 82, 012004 (2010).

    Article  ADS  Google Scholar 

  42. A.D. Frawley, T. Ullrich, R. Vogt, Phys. Rep. 462, 125 (2008).

    Article  ADS  Google Scholar 

  43. CMS Collaboration (V. Khachatryan et al.), Phys. Rev. D 83, 112004 (2011).

    Article  ADS  Google Scholar 

  44. R. Vogt, Eur. Phys. J. C 61, 793 (2009).

    Article  ADS  Google Scholar 

  45. CDF Collaboration (D. Acosta et al.), Phys. Rev. Lett. 88, 161802 (2002).

    Article  ADS  Google Scholar 

  46. CDF Collaboration (T. Affolder et al.), Phys. Rev. Lett. 84, 2094 (2000).

    Article  ADS  Google Scholar 

  47. STAR Collaboration (W. Xu et al.), J. Phys. G: Nucl. Part. Phys. 38, 124066 (2011).

    Article  ADS  Google Scholar 

  48. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 103, 082002 (2009).

    Article  ADS  Google Scholar 

  49. CDF Collaboration (D. Acosta et al.), Phys. Rev. D 71, 032001 (2005).

    Article  ADS  Google Scholar 

  50. Particle Data Group (S. Eidelman et al.), Phys. Lett. B 592, 1 (2004).

    Article  ADS  Google Scholar 

  51. R. Vogt, Phys. Rev. C 81, 044903 (2010).

    Article  ADS  Google Scholar 

  52. LHCb Collaboration, Phys. Lett. B 694, 209 (2010).

    Article  ADS  Google Scholar 

  53. Hard Probe Collaboration (R. Vogt), Int. J. Mod. Phys. A 696, 669 (2003).

    Google Scholar 

  54. T. Song, K.C. Han, C.M. Ko, arXiv:1109.6691 [nucl-th].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Emerick.

Additional information

Communicated by M.C. Birse

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerick, A., Zhao, X. & Rapp, R. Bottomonia in the quark-gluon plasma and their production at RHIC and LHC. Eur. Phys. J. A 48, 72 (2012). https://doi.org/10.1140/epja/i2012-12072-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12072-y

Keywords

Navigation