Skip to main content
Log in

Neutron-induced background by an α-beam incident on a deuterium gas target and its implications for the study of the 2H(α,γ)6Li reaction at LUNA

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The production of the stable isotope 6Li in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological 6Li plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of 7Li abundances and would point to a predominantly primordial origin of 6Li , contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang 6Li production must be revisited. The main production channel for 6Li in the Big Bang is the 2H(α,γ)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an α-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400keV α-beam energy and for comparison also using an americium-beryllium neutron source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47 (2011)

    Article  ADS  Google Scholar 

  2. A.J. Korn et al., Nature 442, 657 (2006)

    Article  ADS  Google Scholar 

  3. M. Asplund, D.L. Lambert, P.E. Nissen, F. Primas, V.V. Smith, Astrophys. J. 644, 229 (2006)

    Article  ADS  Google Scholar 

  4. A.E. García Pérez et al., Astron. Astrophys. 504, 213 (2009)

    Article  ADS  Google Scholar 

  5. M. Steffen, R. Cayrel, P. Bonifacio, H. Ludwig, E. Caffau, Convection and 6Li in the atmospheres of metal-poor halo stars, in IAU Symposium, Vol. 268 (2010) pp. 215-220, 1001.3274

  6. V.V. Smith, D.L. Lambert, P.E. Nissen, Astrophys. J. 408, 262 (1993)

    Article  ADS  Google Scholar 

  7. M. Steffen et al., Mem. Soc. Astron. Ital. Suppl. 22, 152 (2012)

    ADS  Google Scholar 

  8. P.D. Serpico et al., JCAP 12, 010 (2004)

    Article  ADS  Google Scholar 

  9. N. Prantzos, Astron. Astrophys. 448, 665 (2006)

    Article  ADS  Google Scholar 

  10. F. Iocco, M. Pato, Phys. Rev. Lett. 109, 021102 (2012)

    Article  ADS  Google Scholar 

  11. M. Kusakabe, T. Kajino, G.J. Mathews, Phys. Rev. D 74, 023526 (2006)

    Article  ADS  Google Scholar 

  12. M. Pospelov, Phys. Rev. Lett. 98, 231301 (2007)

    Article  ADS  Google Scholar 

  13. K. Jedamzik, M. Pospelov, New J. Phys. 11, 105028 (2009)

    Article  ADS  Google Scholar 

  14. M. Pospelov, J. Pradler, Annu. Rev. Nucl. Part. Sci. 60, 539 (2010)

    Article  ADS  Google Scholar 

  15. L. Marcucci, K. Nollett, R. Schiavilla, R. Wiringa, Nucl. Phys. A 777, 111 (2006)

    Article  ADS  Google Scholar 

  16. F. Hammache et al., Phys. Rev. C 82, 065803 (2010)

    Article  ADS  Google Scholar 

  17. A.M. Mukhamedzhanov, L.D. Blokhintsev, B.F. Irgaziev, Phys. Rev. C 83, 055805 (2011)

    Article  ADS  Google Scholar 

  18. C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)

  19. P. Mohr et al., Phys. Rev. C 50, 1543 (1994)

    Article  ADS  Google Scholar 

  20. R.G.H. Robertson et al., Phys. Rev. Lett. 47, 1867 (1981)

    Article  ADS  Google Scholar 

  21. F.E. Cecil, J. Yan, C.S. Galovich, Phys. Rev. C 53, 1967 (1996)

    Article  ADS  Google Scholar 

  22. J. Kiener et al., Phys. Rev. C 44, 2195 (1991)

    Article  ADS  Google Scholar 

  23. J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Dover Publications, New York, 1991)

  24. G. Baur, H. Rebel, Annu. Rev. Nucl. Part. Sci. 46, 321 (1996)

    Article  ADS  Google Scholar 

  25. H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)

    Article  ADS  Google Scholar 

  26. C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)

    Article  ADS  Google Scholar 

  27. D.S. Leonard, H.J. Karwowski, C.R. Brune, B.M. Fisher, E.J. Ludwig, Phys. Rev. C 73, 045801 (2006)

    Article  ADS  Google Scholar 

  28. C. Chasman, K.W. Jones, R.A. Ristinen, Nucl. Instrum. Methods 37, 1 (1965)

    Article  ADS  Google Scholar 

  29. R. Bunting, J.J. Kraushaar, Nucl. Instrum. Methods 118, 565 (1974)

    Article  ADS  Google Scholar 

  30. G. Fehrenbacher, R. Meckbach, H.G. Paretzke, Nucl. Instrum. Methods A 372, 239 (1996)

    Article  ADS  Google Scholar 

  31. G. Fehrenbacher, R. Meckbach, H.G. Paretzke, Nucl. Instrum. Methods A 397, 391 (1997)

    Article  ADS  Google Scholar 

  32. J. Ljungvall, J. Nyberg, Nucl. Instrum. Methods A 546, 553 (2005)

    Article  ADS  Google Scholar 

  33. A. Ataç et al., Nucl. Instrum. Methods A 607, 554 (2009)

    Article  ADS  Google Scholar 

  34. I. Abt et al., Eur. Phys. J. A 36, 139 (2008)

    Article  ADS  Google Scholar 

  35. D.-M. Mei, S. Elliott, A. Hime, V. Gehman, K. Kazkaz, Phys. Rev. C 77, 054614 (2008)

    Article  ADS  Google Scholar 

  36. G. Heusser, Nucl. Instrum. Methods B 83, 223 (1993)

    Article  ADS  Google Scholar 

  37. G. Heusser, Annu. Rev. Nucl. Part. Sci. 45, 543 (1995)

    Article  ADS  Google Scholar 

  38. R. Wordel et al., Nucl. Instrum. Methods A 369, 557 (1996)

    Article  ADS  Google Scholar 

  39. S.P. Ahlen et al., Phys. Lett. B 249, 149 (1990)

    Article  ADS  Google Scholar 

  40. P. Belli et al., Nuovo Cimento A 101, 959 (1989)

    Article  ADS  Google Scholar 

  41. F. Arneodo et al., Nuovo Cimento A 112, 819 (1999)

    ADS  Google Scholar 

  42. D. Bemmerer et al., Eur. Phys. J. A 24, 313 (2005)

    Article  ADS  Google Scholar 

  43. A. Caciolli et al., Eur. Phys. J. A 39, 179 (2009)

    Article  ADS  Google Scholar 

  44. T. Szücs et al., Eur. Phys. J. A 44, 513 (2010)

    Article  ADS  Google Scholar 

  45. A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003)

    Article  ADS  Google Scholar 

  46. C. Casella et al., Nucl. Instrum. Methods A 489, 160 (2002)

    Article  ADS  Google Scholar 

  47. G. Gyürky et al., Phys. Rev. C 75, 035805 (2007)

    Article  ADS  Google Scholar 

  48. J. Görres, K. Kettner, H. Kräwinkel, C. Rolfs, Nucl. Instrum. Methods 177, 295 (1980)

    Article  ADS  Google Scholar 

  49. M. Marta et al., Nucl. Instrum. Methods A 569, 727 (2006)

    Article  ADS  Google Scholar 

  50. J. Osborne et al., Nucl. Phys. A 419, 115 (1984)

    Article  ADS  Google Scholar 

  51. C. Arpesella et al., Nucl. Instrum. Methods A 360, 607 (1995)

    Article  ADS  Google Scholar 

  52. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  53. J.K. Dickens, Nucl. Phys. A 401, 189 (1983)

    Article  ADS  Google Scholar 

  54. J.K. Dickens, Phys. Rev. C 28, 916 (1983)

    Article  ADS  Google Scholar 

  55. M. Kadi et al., Phys. Rev. C 61, 034307 (2000)

    Article  ADS  Google Scholar 

  56. J. Lachkar, J. Sigaud, Y. Patin, G. Haouat, Nucl. Phys. A 222, 333 (1974)

    Article  ADS  Google Scholar 

  57. J.K. Dickens, Nucl. Sci. Eng. 50, 311 (1973)

    Google Scholar 

  58. P. Karatzas et al., Nucl. Sci. Eng. 67, 34 (1978)

    Google Scholar 

  59. Evaluated Nuclear Structure Data File (ENSDF), International Atomic Energy Agency, http://www-nds.iaea.org/queryensdf

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to C. Gustavino.

Additional information

Communicated by B.R. Fulton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anders, M., Trezzi, D., Bellini, A. et al. Neutron-induced background by an α-beam incident on a deuterium gas target and its implications for the study of the 2H(α,γ)6Li reaction at LUNA. Eur. Phys. J. A 49, 28 (2013). https://doi.org/10.1140/epja/i2013-13028-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13028-5

Keywords

Navigation