Skip to main content
Log in

Non-extensive statistics and understanding particle production and kinetic freeze-out process from pT-spectra at 2.76 TeV

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

An approach, based on Tsallis non-extensive statistics, has been employed, here, to analyse, systematically, the p T -spectra of various identified secondary hadrons like pions, kaons, protons and antiprotons, produced in different central Pb + Pb interactions at LHC energy 2.76TeV in terms of multiplicity and temperature fluctuations. The results, thus obtained, have been utilized to understand the various stages of different types of hadron production during evolution of the fireball produced in such collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. De, Eur. Phys. J. A 50, 70 (2014)

    Article  ADS  Google Scholar 

  2. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. C. Tsallis, Nonextensive Statistical Mechanics and It's Applications, in Lect. Notes Phys., Vol. 560 (Springer, 2001) p. 3

  4. C. Tsallis, Eur. Phys. J. A 40, 257 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Tsallis, Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  6. C. Tsallis, Entropy 13, 1765 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. D. Prato, C. Tsallis, Phys. Rev. E 60, 2398 (1999)

    Article  ADS  Google Scholar 

  8. C. Beck, Physica A 286, 164 (2000)

    Article  ADS  Google Scholar 

  9. C. Beck, Physica A 305, 209 (2002)

    Article  MATH  ADS  Google Scholar 

  10. C. Beck, Eur. Phys. J. A 40, 267 (2009)

    Article  ADS  Google Scholar 

  11. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  12. G. Wilk, Z. Wlodarczyk, Chaos Solitons Fractals 13, 581 (2002)

    Article  MATH  ADS  Google Scholar 

  13. G. Wilk, Z. Wlodarczyk, Physica A 305, 227 (2002)

    Article  MATH  ADS  Google Scholar 

  14. G. Wilk, Z. Wlodarczyk, AIP Conf. Proc. 965, 76 (2007) arXiv:cond-mat/0708.2660

    Article  ADS  Google Scholar 

  15. G. Wilk, Z. Wlodarczyk, Physica A 387, 4809 (2008) arXiv:cond-mat/0711.3348

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Wilk, Braz. J. Phys. 37, 714 (2007) arXiv:hep-ph/0610292

    Article  ADS  Google Scholar 

  17. G. Wilk, Z. Wlodarczyk, Phys. Rev. C 79, 054903 (2009) arXiv:hep-ph/0902.3922

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009) arXiv:hep-ph/0810.2939

    Article  ADS  Google Scholar 

  19. G. Wilk, Z. Wlodarczyk, J. Phys. G 38, 065101 (2011)

    Article  ADS  Google Scholar 

  20. T. Osada, G. Wilk, Phys. Rev. C 77, 044903 (2008) arXiv:nucl-th/0710.1905

    Article  ADS  Google Scholar 

  21. T.S. Biro, G. Purcsel, Phys. Rev. Lett. 95, 162302 (2005)

    Article  ADS  Google Scholar 

  22. T.S. Biro, K. Urmossy, J. Phys. G 36, 064044 (2009) arXiv:hep-ph/0812.2985

    Article  ADS  Google Scholar 

  23. T.S. Biro, G. Purcsel, K. Urmossy, Eur. Phys. J. A 40, 325 (2009)

    Article  ADS  Google Scholar 

  24. T.S. Biro, K. Urmossy, Z. Schram, J. Phys. G 37, 094027 (2010)

    Article  ADS  Google Scholar 

  25. T.S. Biro, E. Molnar, Eur. Phys. J. A 48, 172 (2012)

    Article  ADS  Google Scholar 

  26. K. Urmossy, EPJ Web of Conferences 13, 05003 (2011)

    Article  Google Scholar 

  27. M. Biyajima et al., Eur. Phys. J. C 40, 243 (2005) arXiv:hep-ph/0403063

    Article  ADS  Google Scholar 

  28. M. Biyajima et al., Eur. Phys. J. C 48, 597 (2006) arXiv:hep-ph/0602120

    Article  ADS  Google Scholar 

  29. W.M. Alberico, A. Lavagno, Eur. Phys. J. A 40, 313 (2009) arXiv:nucl-th/0901.4952

    Article  ADS  Google Scholar 

  30. A. Lavagno, P. Quarati, A.M. Scarfone, Braz. J. Phys. 39, 457 (2009)

    Article  ADS  Google Scholar 

  31. A. Lavagno, Phys. Lett. A 301, 13 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. G. Kaniadakis, Eur. Phys. J. A 40, 275 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Kodama, T. Koide, Eur. Phys. J. A 40, 289 (2009)

    Article  ADS  Google Scholar 

  34. B. De et al., Int. J. Mod. Phys. E 16, 1687 (2007)

    Article  ADS  Google Scholar 

  35. B. De et al., Int. J. Mod. Phys. A 25, 1239 (2010)

    Article  MATH  ADS  Google Scholar 

  36. T. Wibig, J. Phys. G 37, 115009 (2010) arXiv:hep-ph/1005.5652

    Article  ADS  Google Scholar 

  37. T. Wibig, Eur. Phys. J. C 74, 2966 (2014) arXiv:hep-ph/1304.0655v1

    Article  ADS  Google Scholar 

  38. D. Jiulin, Chin. Phys. B 19, 070501 (2010) arXiv:cond-mat/1012.2765

    Article  Google Scholar 

  39. G. Ran, D. Jiulin, Physica A 391, 2853 (2012) arXiv:cond-mat/1202.0638

    Article  MathSciNet  Google Scholar 

  40. K. Urmossy, arXiv:hep-ph/1212.0260v2

  41. P. Van, G.G. Barnafoldi, T.S. Biro, K. Urmossy, J. Phys. Conf. Ser. 394, 012002 (2012) arXiv:stat-mech/1209.5963v1

    Article  ADS  Google Scholar 

  42. A. Deppman, Physica A 391, 6380 (2012) arXiv:math-ph/1205.0455v2

    Article  ADS  Google Scholar 

  43. I. Sena, A. Deppman, AIP Conf. Proc. 1520, 172 (2013) arXiv:hep-ph/1208.2952v1

    Article  ADS  Google Scholar 

  44. I. Sena, A. Deppman, Eur. Phys. J. A 49, 17 (2013) arXiv:hep-ex/1209.2367v1

    Article  ADS  Google Scholar 

  45. A. Deppman, J. Phys. G 41, 055108 (2014) arXiv:hep-ph/1212.0379v2

    Article  ADS  Google Scholar 

  46. L. Marques, E. Andrade-II, A. Deppman, Phys. Rev. D 87, 114022 (2013) arXiv:hep-ph/1210.1725v3

    Article  ADS  Google Scholar 

  47. J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)

    Article  ADS  Google Scholar 

  48. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

    Article  ADS  Google Scholar 

  49. J. Cleymans, Phys. Lett. B 723, 351 (2013) arXiv:hep-ph/1309.7466

    Article  ADS  Google Scholar 

  50. M.D. Azmi, J. Cleymans, arXiv: hep-ph/1310.0217

  51. M.D. Azmi, J. Cleymans, J. Phys. G 41, 065001 (2014) arXiv: hep-ph/1401.4835

    Article  ADS  Google Scholar 

  52. M. Rybczynski, Z. Wlodarczyk, G. Wilk, J. Phys. G 39, 095004 (2012) arXiv:hep-ph/1203.6787v3

    Article  ADS  Google Scholar 

  53. M. Rybczynski, Z. Wlodarczyk, G. Wilk, Acta Phys. Pol. B Proc. Suppl. 6, 507 (2013) arXiv:hep-ph/1212.1281

    Article  Google Scholar 

  54. O. Ristea et al., J. Phys. Conf. Ser. 420, 012041 (2013)

    Article  ADS  Google Scholar 

  55. P.K. Khandai et al., J. Phys. G 41, 025105 (2014)

    Article  ADS  Google Scholar 

  56. K.S. Lee, U. Heinz, E. Schneddermann, Z. Phys. C 48, 525 (1990)

    Article  Google Scholar 

  57. J.P. Blaizot, J.Y. Ollitrault, Adv. Ser. Direct. High Energy Phys. 6, 393 (1990)

    Article  Google Scholar 

  58. I.G. Bearden et al., Phys. Rev. Lett. 78, 2080 (1997)

    Article  ADS  Google Scholar 

  59. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  60. ALICE Collaboration (B. Abelev et al.), J. High Energy Phys. 09, 112 (2012) arXiv:nucl-ex/1203.2160

    ADS  Google Scholar 

  61. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 106, 032301 (2011)

    Article  ADS  Google Scholar 

  62. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)

    Article  ADS  Google Scholar 

  63. B. Alver, arXiv:nucl-ex/0805.4411

  64. S. Eremin, S. Voloshin, Phys. Rev. C 67, 064905 (2003)

    Article  ADS  Google Scholar 

  65. P.K. Netrakanti, B. Mohanty, Phys. Rev. C 70, 027901 (2004)

    Article  ADS  Google Scholar 

  66. B. De, S. Bhattacharyya, Phys. Rev. C 71, 024903 (2005)

    Article  ADS  Google Scholar 

  67. ALICE Collaboration (D. Peresunko), Nucl. Phys. A 904-905, 755c (2013) arXiv:nucl-ex/1210.5749

    Article  Google Scholar 

  68. ALICE Collaboration (B. Guerzoni), pp spectra at 2.76 TeV: Summary, http://agenda.infn.it/materialDisplay.py?contribId=0&materialId=slides&confId=6125

  69. ALICE Collaboration (G. Conesa Balbastre), J. Phys. G 38, 124117 (2011) arXiv:hep-ex/1109.4929

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar De.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, B. Non-extensive statistics and understanding particle production and kinetic freeze-out process from pT-spectra at 2.76 TeV. Eur. Phys. J. A 50, 138 (2014). https://doi.org/10.1140/epja/i2014-14138-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14138-2

Keywords

Navigation