Skip to main content
Log in

Bohr Hamiltonian with Hulthén plus ring-shaped potential for triaxial nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper, we solve the eigenvalues and eigenvectors problem with the Bohr collective Hamiltonian for triaxial nuclei. The β-part of the collective potential is taken to be equal to the Hulthén potential while the γ-part is defined by a new generalized potential obtained from a ring-shaped one. Analytical expressions for spectra and wave functions are derived by means of a recent version of the asymptotic iteration method and the usual approximations. The calculated energies and B(E2) transition rates are compared with experimental data and the available theoretical results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26, 1 (1952).

    Google Scholar 

  2. A. Bohr, B.R. Mottelson, Nuclear Structure Vol. II: Nuclear Deformations (Benjamin, New York, 1975).

  3. L. Fortunato, Eur. Phys. J. A 26, 1 (2005).

    Article  ADS  Google Scholar 

  4. F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).

    Article  ADS  Google Scholar 

  5. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

    Article  ADS  Google Scholar 

  6. F. Iachello, Phys. Rev. Lett. 91, 132502 (2003).

    Article  ADS  Google Scholar 

  7. D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, Phys. Lett. B 588, 172 (2004).

    Article  ADS  Google Scholar 

  8. L. Hulthén, Ark. Mat. Astron. Fys. A 28, 5 (1942).

    Google Scholar 

  9. L. Hulthén, Ark. Mat. Astron. Fys. B 29, 1 (1942).

    ADS  Google Scholar 

  10. M. Chabab, A. Lahbas, M. Oulne, Int. J. Mod. Phys. E 21, 10 (2012).

    Article  Google Scholar 

  11. I. Boztosun, M. Karakoc, Chin. Phys. Lett. 24, 3028 (2007).

    Article  ADS  Google Scholar 

  12. M. Chabab, A. Lahbas, M. Oulne, Phys. Rev. C 91, 064307 (2015).

    Article  ADS  Google Scholar 

  13. M. Chabab, M. Oulne, Int. Rev. Phys. 4, 331 (2010).

    Google Scholar 

  14. M. Chabab, R. Jourdani, M. Oulne, Int. J. Phys. Sci. 7, 1150 (2012).

    Article  Google Scholar 

  15. I. Yigitoglu, D. Bonatsos, Phys. Rev. C 83, 014303 (2011).

    Article  ADS  Google Scholar 

  16. A.A. Raduta, P. Buganu, Phys. Rev. C 83, 034313 (2011).

    Article  ADS  Google Scholar 

  17. I. Inci, Int. J. Mod. Phys. E 23, 10 (2014).

    Article  Google Scholar 

  18. D.J. Rowe, T.A. Welsh, M.A. Caprio, Phys. Rev. C 79, 054304 (2009).

    Article  ADS  Google Scholar 

  19. A.S. Davydov, A.A. Chaban, Nucl. Phys. 20, 499 (1960).

    Article  Google Scholar 

  20. D. Bonatsos, D. Lenis, E.A. McCutchan, D. Petrellis, I. Yigitoglu, Phys. Lett. B 649, 394 (2007).

    Article  ADS  Google Scholar 

  21. A.A. Raduta, A.C. Gheorghe, P. Buganu, A. Faessler, Nucl. Phys. A 819, 46 (2009).

    Article  ADS  Google Scholar 

  22. L. Fortunato, Phys. Rev. C 70, 011302 (2004).

    Article  ADS  Google Scholar 

  23. L. Fortunato, S. De Baerdemacker, K. Heyde, Phys. Rev. C 74, 014310 (2006).

    Article  ADS  Google Scholar 

  24. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956).

    Article  MATH  ADS  Google Scholar 

  25. U. Laha, C. Bhattacharyya, K. Roy, B. Talukdar, Phys. Rev. C 38, 558 (1988).

    Article  ADS  Google Scholar 

  26. P. Matthys, H. De Meyer, Phys. Rev. A 38, 1168 (1988).

    Article  ADS  Google Scholar 

  27. C.S. Jia, T. Chen, L.G. Cui, Phys. Lett. A 373, 1621 (2009).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. S.H. Dong, W.C. Qiang, G.H. Sun, V.B. Bezerra, J. Phys. A: Math. Theor. 40, 10535 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. A. Soylu, O. Bayrak, I. Boztosun, J. Phys. A: Math. Theor. 41, 065308 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 36, 11807 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. H. Ciftci, R.L. Hall, N. Saad, J. Phys. Math. Gen. A 38, 1147 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. S.M. Ikhdair, R. Sever, J. Math. Chem. 42, 461 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  33. O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A: Math. Gen. 39, 11521 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. D. Agboola, Commun. Theor. Phys. 55, 972 (2011).

    Article  MATH  ADS  Google Scholar 

  35. S. De Baerdemacker, L. Fortunato, V. Hellemans, K. Heyde, Nucl. Phys. A 769, 16 (2006).

    Article  ADS  Google Scholar 

  36. D. Bonatsos, E.A. McCutchan, N. Minkov, R.F. Casten, P. Yotov, D. Lenis, D. Petrellis, I. Yigitoglu, Phys. Rev. C 76, 064312 (2007).

    Article  ADS  Google Scholar 

  37. P. Buganu, A.A. Raduta, Rom. J. Phys. 60, 161 (2015).

    Google Scholar 

  38. A. Gheorghe, A.A. Raduta, A. Faessler, Phys. Lett. B 648, 171 (2007).

    Article  ADS  Google Scholar 

  39. M. Abramowitz, I.A. Stegun Handbook of Mathematical Functions (Dover, New York, 1972).

    Article  Google Scholar 

  40. D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P.P. Raychev, P.A. Terziev, Phys. Lett. B 584, 40 (2004).

    Article  ADS  Google Scholar 

  41. J. Meyer-ter-Vehn, Nucl. Phys. A 249, 111 (1975).

    Article  ADS  Google Scholar 

  42. G.B. Arfken, H.J. Weber Mathematical Methods for Physicists (Harcourt Academic Press, San Diego, 2001).

    Article  Google Scholar 

  43. G. Szego Orthagonal Polynomials (American Mathematical Society, New York, 1939).

    Article  Google Scholar 

  44. A.R. Edmonds Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).

    Article  Google Scholar 

  45. A.S. Davydov, G.F. Fillipov, Nucl. Phys. 8, 237 (1958).

    Article  Google Scholar 

  46. E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C 76, 024306 (2007).

    Article  ADS  Google Scholar 

  47. A.A. Raduta, P. Buganu, Phys. Rev. C 88, 064328 (2013).

    Article  ADS  Google Scholar 

  48. U. Meyer, A.A. Raduta, A. Faessler, Nucl. Phys. A 641, 321 (1998).

    Article  ADS  Google Scholar 

  49. W. Greiner, J.A. Maruhn Nuclear Models (Springer, Berlin, 1996).

    Article  Google Scholar 

  50. http://www.nndc.bnl.gov/nndc/ensdf/.

  51. N.V. Zamfir, R.F. Casten, Phys. Lett. B 260, 265 (1991).

    Article  ADS  Google Scholar 

  52. D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 621, 102 (2005).

    Article  ADS  Google Scholar 

  53. P. Buganu, R. Budaca, Phys. Rev. C 91, 014306 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Oulne.

Additional information

Communicated by K. Yabana

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabab, M., Lahbas, A. & Oulne, M. Bohr Hamiltonian with Hulthén plus ring-shaped potential for triaxial nuclei. Eur. Phys. J. A 51, 131 (2015). https://doi.org/10.1140/epja/i2015-15131-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15131-y

Keywords

Navigation