Skip to main content
Log in

r-mode astronomy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Next-generation gravitational wave detectors will start taking data in the near future. Here we discuss the chances to detect the continuous emission from r-mode oscillations in compact stars and study which properties of compact stars we can infer from such novel data. In particular we show that the combination of the gravitational wave data with electromagnetic multi-messenger observations could give us detailed insight into compact star properties, ranging from precise mass-radius measurements to the determination of the equation of state and the phase structure of dense matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Friedman, B.F. Schutz, Astrophys. J. 222, 281 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Papaloizou, J.E. Pringle, Mon. Not. R. Astron. Soc. 182, 423 (1978)

    Article  ADS  MATH  Google Scholar 

  3. N. Andersson, Astrophys. J. 502, 708 (1998) gr-qc/9706075

    Article  ADS  Google Scholar 

  4. J.L. Friedman, S.M. Morsink, Astrophys. J. 502, 714 (1998) gr-qc/9706073

    Article  ADS  Google Scholar 

  5. L. Lindblom, B.J. Owen, S.M. Morsink, Phys. Rev. Lett. 80, 4843 (1998) gr-qc/9803053

    Article  ADS  Google Scholar 

  6. N. Andersson, K.D. Kokkotas, B.F. Schutz, Astrophys. J. 510, 846 (1999) astro-ph/9805225

    Article  ADS  Google Scholar 

  7. N. Andersson, K.D. Kokkotas, Int. J. Mod. Phys. D 10, 381 (2001) gr-qc/0010102

    Article  ADS  Google Scholar 

  8. N. Stergioulas, Living Rev. Relativ. 6, 3 (2003) gr-qc/0302034

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Passamonti, K. Glampedakis, Mon. Not. R. Astron. Soc. 422, 3327 (2012) arXiv:1112.3931

    Article  ADS  Google Scholar 

  10. D.D. Doneva, K.D. Kokkotas, P. Pnigouras, Phys. Rev. D 92, 104040 (2015) arXiv:1510.00673

    Article  ADS  Google Scholar 

  11. A. Passamonti, E. Gaertig, K. Kokkotas, D. Doneva, Phys. Rev. D 87, 084010 (2013) arXiv:1209.5308

    Article  ADS  Google Scholar 

  12. B.J. Owen et al., Phys. Rev. D 58, 084020 (1998) gr-qc/9804044

    Article  ADS  Google Scholar 

  13. R. Bondarescu, S.A. Teukolsky, I. Wasserman, Phys. Rev. D 79, 104003 (2009) arXiv:0809.3448

    Article  ADS  Google Scholar 

  14. B.J. Owen, Phys. Rev. D 82, 104002 (2010) arXiv:1006.1994

    Article  ADS  Google Scholar 

  15. M.G. Alford, K. Schwenzer, Astrophys. J. 781, 26 (2014) arXiv:1210.6091

    Article  ADS  Google Scholar 

  16. S. Mahmoodifar, T. Strohmayer, Astrophys. J. 773, 140 (2013) arXiv:1302.1204

    Article  ADS  Google Scholar 

  17. M.G. Alford, K. Schwenzer, Mon. Not. R. Astron. Soc. 446, 3631 (2015) arXiv:1403.7500

    Article  ADS  Google Scholar 

  18. A. Mytidis, M. Coughlin, B. Whiting, arXiv:1505.03191 (2015)

  19. LIGO Scientific Collaboration (G.M. Harry), Class. Quantum Grav. 27, 084006 (2010)

    Article  ADS  Google Scholar 

  20. LIGO Scientific Collaboration (J. Aasi et al.), Class. Quantum Grav. 32, 074001 (2015) arXiv:1411.4547

    Article  ADS  Google Scholar 

  21. VIRGO Collaboration (F. Acernese et al.), Class. Quantum Grav. 32, 024001 (2015) arXiv:1408.3978

    Article  ADS  Google Scholar 

  22. KAGRA Collaboration (Y. Aso et al.), Phys. Rev. D 88, 043007 (2013) arXiv:1306.6747

    Article  Google Scholar 

  23. LIGO Scientific Collaboration (B. Abbott et al.), Phys. Rev. D 69, 082004 (2004) gr-qc/0308050

    Article  Google Scholar 

  24. LIGO Scientific Collaboration (B. Abbott et al.), Astrophys. J. 683, L45 (2008) arXiv:0805.4758

    Article  ADS  Google Scholar 

  25. LIGO Collaboration (K. Wette et al.), Class. Quantum Grav. 25, 235011 (2008) arXiv:0802.3332

    Article  Google Scholar 

  26. Virgo Collaboration (B. Abbott et al.), Astrophys. J. 713, 671 (2010) arXiv:0909.3583

    Article  ADS  Google Scholar 

  27. LIGO Scientific Collaboration (J. Aasi et al.), Astrophys. J. 785, 119 (2014) arXiv:1309.4027

    Article  ADS  Google Scholar 

  28. LIGO Scientific Collaboration (J. Abadie et al.), Astrophys. J. 722, 1504 (2010) arXiv:1006.2535

    Article  ADS  Google Scholar 

  29. J. Aasi, arXiv:1412.5942 (2014)

  30. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  31. LIGO Scientific Collaboration, Virgo Collaboration (A.J. Weinstein), Class. Quantum Grav. 29, 124012 (2012) arXiv:1112.1057

    Article  Google Scholar 

  32. M.G. Alford, K. Schwenzer, Phys. Rev. Lett. 113, 251102 (2014) arXiv:1310.3524

    Article  ADS  Google Scholar 

  33. M. Alford, S. Mahmoodifar, K. Schwenzer, Phys. Rev. D 85, 024007 (2012) arXiv:1012.4883

    Article  ADS  Google Scholar 

  34. K.H. Lockitch, J.L. Friedman, Astrophys. J. 521, 764 (1999) gr-qc/9812019

    Article  ADS  Google Scholar 

  35. K.H. Lockitch, N. Andersson, J.L. Friedman, Phys. Rev. D 63, 024019 (2001) gr-qc/0008019

    Article  ADS  Google Scholar 

  36. K.H. Lockitch, J.L. Friedman, N. Andersson, Phys. Rev. D 68, 124010 (2003) gr-qc/0210102

    Article  ADS  Google Scholar 

  37. A. Idrisy, B.J. Owen, D.I. Jones, Phys. Rev. D 91, 024001 (2015) arXiv:1410.7360

    Article  ADS  Google Scholar 

  38. L. Lindblom, G. Mendell, B.J. Owen, Phys. Rev. D 60, 064006 (1999) gr-qc/9902052

    Article  ADS  Google Scholar 

  39. E. Gaertig, K.D. Kokkotas, Phys. Rev. D 78, 064063 (2008) arXiv:0809.0629

    Article  ADS  Google Scholar 

  40. K. Thorne, Rev. Mod. Phys. 52, 299 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  41. P.S. Shternin, D.G. Yakovlev, Phys. Rev. D 78, 063006 (2008) arXiv:0808.2018

    Article  ADS  Google Scholar 

  42. R.F. Sawyer, Phys. Rev. D 39, 3804 (1989)

    Article  ADS  Google Scholar 

  43. B.L. Friman, O.V. Maxwell, Astrophys. J. 232, 541 (1979)

    Article  ADS  Google Scholar 

  44. J. Madsen, Phys. Rev. Lett. 81, 3311 (1998) astro-ph/9806032

    Article  ADS  Google Scholar 

  45. N. Andersson, D.I. Jones, K.D. Kokkotas, Mon. Not. R. Astron. Soc. 337, 1224 (2002) astro-ph/0111582

    Article  ADS  Google Scholar 

  46. K.D. Kokkotas, N. Stergioulas, Astron. Astrophys. 341, 110 (1999) astro-ph/9805297

    ADS  Google Scholar 

  47. L. Rezzolla, F.K. Lamb, S.L. Shapiro, Astrophys.J. 531, L141 (2000) astro-ph/9911188

    Article  ADS  Google Scholar 

  48. L. Lindblom, J.E. Tohline, M. Vallisneri, Phys. Rev. Lett. 86, 1152 (2001) astro-ph/0010653

    Article  ADS  Google Scholar 

  49. P. Arras et al., Astrophys. J. 591, 1129 (2003) astro-ph/0202345

    Article  ADS  Google Scholar 

  50. C. Cuofano, A. Drago, Phys. Rev. D 82, 084027 (2010) arXiv:0905.3368

    Article  ADS  Google Scholar 

  51. M.G. Alford, S. Mahmoodifar, K. Schwenzer, Phys. Rev. D 85, 044051 (2012) arXiv:1103.3521

    Article  ADS  Google Scholar 

  52. B. Haskell, K. Glampedakis, N. Andersson, Mon. Not. R. Astron. Soc. 441, 1662 (2014) arXiv:1307.0985

    Article  ADS  Google Scholar 

  53. M.G. Alford, S. Han, K. Schwenzer, Phys. Rev. C 91, 055804 (2015) arXiv:1404.5279

    Article  ADS  Google Scholar 

  54. B. Haskell, N. Degenaar, W.C.G. Ho, Mon. Not. R. Astron. Soc. 424, 93 (2012) arXiv:1201.2101

    Article  ADS  Google Scholar 

  55. F. Ozel, Rep. Prog. Phys. 76, 016901 (2013) arXiv:1210.0916

    Article  ADS  Google Scholar 

  56. N. Andersson, D.I. Jones, K.D. Kokkotas, N. Stergioulas, Astrophys. J. 534, L75 (2000) astro-ph/0002114

    Article  ADS  Google Scholar 

  57. M.G. Alford, K. Schwenzer, Nucl. Phys. A 931, 740 (2014) arXiv:1408.3152

    Article  ADS  Google Scholar 

  58. Y. Levin, Astrophys. J. 517, 328 (1999) arXiv:astro-ph/9810471

    Article  ADS  Google Scholar 

  59. J.S. Heyl, Astrophys. J. 574, L57 (2002)

    Article  ADS  Google Scholar 

  60. N.E. White, W. Zhang, Astrophys. J. Lett. 490, L87 (1997)

    Article  ADS  Google Scholar 

  61. L. Bildsten, Astrophys. J. Lett. 501, L89 (1998) astro-ph/9804325

    Article  ADS  Google Scholar 

  62. P.R. Brady, T. Creighton, Phys. Rev. D 61, 082001 (2000) gr-qc/9812014

    Article  ADS  Google Scholar 

  63. M. Punturo et al., Class. Quantum Grav. 27, 194002 (2010)

    Article  ADS  Google Scholar 

  64. S.E. Boggs et al., Science 348, 670 (2015)

    Article  ADS  Google Scholar 

  65. K.N. Yakunin, arXiv:1505.05824 (2015)

  66. A. Watts, B. Krishnan, L. Bildsten, B.F. Schutz, Mon. Not. R. Astron. Soc. 389, 839 (2008) arXiv:0803.4097

    Article  ADS  Google Scholar 

  67. E.F. Brown, L. Bildsten, R.E. Rutledge, Astrophys. J. 504, L95 (1998) arXiv:astro-ph/9807179

    Article  ADS  Google Scholar 

  68. R. Bondarescu, I. Wasserman, Astrophys. J. 778, 9 (2013) arXiv:1305.2335

    Article  ADS  Google Scholar 

  69. L. Lindblom, B.J. Owen, G. Ushomirsky, Phys. Rev. D 62, 084030 (2000) astro-ph/0006242

    Article  ADS  Google Scholar 

  70. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, 1983)

  71. G. Hobbs, A.G. Lyne, M. Kramer, Mon. Not. R. Astron. Soc. 402, 1027 (2010) arXiv:0912.4537

    Article  ADS  Google Scholar 

  72. M.C. Miller, J.M. Miller, Phys. Rep. 548, 1 (2015) arXiv:1408.4145

    Article  ADS  MathSciNet  Google Scholar 

  73. S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, Astrophys. J. 772, 7 (2013) arXiv:1302.0023

    Article  ADS  Google Scholar 

  74. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010) arXiv:1010.5788

    Article  ADS  Google Scholar 

  75. J. Antoniadis et al., Science 340, 6131 (2013) arXiv:1304.6875

    Article  ADS  Google Scholar 

  76. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007) astro-ph/0612440

    Article  ADS  Google Scholar 

  77. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001) astro-ph/0002232

    Article  ADS  Google Scholar 

  78. F. Ozel, G. Baym, T. Guver, Phys. Rev. D 82, 101301 (2010) arXiv:1002.3153

    Article  ADS  Google Scholar 

  79. A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010) arXiv:1005.0811

    Article  ADS  Google Scholar 

  80. M. Durant et al., Astrophys. J. 746, 6 (2012) arXiv:1111.2346

    Article  ADS  Google Scholar 

  81. A. Patruno, Astrophys. J. 722, 909 (2010) arXiv:1006.0815

    Article  ADS  Google Scholar 

  82. K. Nandra, arXiv:1306.2307 (2013)

  83. L. Stella, LOFT Team, Mem. Soc. Astron. Ital. 84, 782 (2013)

    ADS  Google Scholar 

  84. K.C. Gendreau, Z. Arzoumanian, T. Okajima, The Neutron star Interior Composition ExploreR (NICER): An Explorer mission of opportunity for soft X-ray timing spectroscopy, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8443 (2012) p. 13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Schwenzer.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokkotas, K., Schwenzer, K. r-mode astronomy. Eur. Phys. J. A 52, 38 (2016). https://doi.org/10.1140/epja/i2016-16038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16038-9

Keywords

Navigation