Skip to main content
Log in

Hyperon puzzle, hadron-quark crossover and massive neutron stars

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) “CRover”, which interpolates the two phases at around 3 times the nuclear matter density ( \( \rho_{0}\), it is found that the cold NSs with the gravitational mass larger than \( 2M_{\odot}\) can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range \( (12.5 \pm 0.5)\) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 \( \rho_{0}\) and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about \( 0.2M_{\odot}\). The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fukushima, T. Hatsuda, Rept. Prog. Phys. 74, 014001 (2011)

    Article  ADS  Google Scholar 

  2. P. Braun-Munzinger, B. Friman, J. Stachel (Editors), Nucl. Phys. A 931, 1 (2014)

    Article  Google Scholar 

  3. K. Fukushima, C. Sasaki, Prog. Part. Nucl. Phys. 72, 99 (2013) arXiv:1301.6377 [hep-ph]

    Article  ADS  Google Scholar 

  4. A. Bazavov, PoS LATTICE 2014, 392 (2015)

    Google Scholar 

  5. J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012) arXiv:1305.3510 [nucl-th]

    Article  ADS  Google Scholar 

  6. P.B. Demorest, T. Pennucci, S.M. Ranson, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  7. J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa et al., Science 340, 6131 (2013) arXiv:1304.6875 [astro-ph.HE]

    Article  ADS  Google Scholar 

  8. T. Takatsuka, T. Hatsuda, K. Masuda, in Proceedings of the 11th International Symposium on “Origin of Matter and Evolution of Galaxies (OMEG 11)” (Nov. 14-17, 2011, RIKEN, Wako, Japan) (2011)

  9. G. Baym, Physica 96A, 131 (1979)

    Article  ADS  Google Scholar 

  10. T. Celik, F. Karsch, H. Satz, Phys. Lett. B 97, 128 (1980)

    Article  ADS  Google Scholar 

  11. T. Schafer, F. Wilczek, Phys. Rev. Lett. 82, 3956 (1999)

    Article  ADS  Google Scholar 

  12. K. Fukushima, Phys. Lett. B 591, 277 (2004)

    Article  ADS  Google Scholar 

  13. T. Hatsuda, M. Tachibana, N. Yamamoto, G. Baym, Phys. Rev. Lett. 97, 122001 (2006) hep-ph/0605018

    Article  ADS  Google Scholar 

  14. K. Maeda, G. Baym, T. Hatsuda, Phys. Rev. Lett. 103, 085301 (2009)

    Article  ADS  Google Scholar 

  15. K. Masuda, T. Hatsuda, T. Takatsuka, Astrophys. J. 764, 12 (2013) arXiv:1205.3621 [nucl-th]

    Article  ADS  Google Scholar 

  16. K. Masuda, T. Hatsuda, T. Takatsuka, PTEP 2013, 073D01 (2013) arXiv:1212.6803 [nucl-th]

    Google Scholar 

  17. K. Masuda, T. Hatsuda, T. Takatsuka, PTEP 2016, 021D01 (2016) arXiv:1506.000984 [nucl-th]

    Google Scholar 

  18. D.E. Alvarez-Castillo, S. Benic, D. Blaschke, R. Lastowiecki, Acta Phys. Pol. Suppl. 7, 203 (2014) arXiv:1311.5112 [nucl-th]

    Article  Google Scholar 

  19. T. Hell, W. Weise, Phys. Rev. C 90, 045801 (2014) arXiv:1402.4098 [nucl-th]

    Article  ADS  Google Scholar 

  20. T. Kojo, P.D. Powell, Y. Song, G. Baym, Phys. Rev. D 91, 045003 (2015) arXiv:1412.1108 [hep-ph]

    Article  ADS  Google Scholar 

  21. T. Nagae, Prog. Theor. Phys. Suppl. 185, 299 (2010)

    Article  ADS  Google Scholar 

  22. H. Tamura, Prog. Theor. Phys. Suppl. 185, 315 (2010)

    Article  ADS  Google Scholar 

  23. K. Nakazawa, H. Takahashi, Prog. Theor. Phys. Suppl. 185, 335 (2010)

    Article  ADS  Google Scholar 

  24. HAL QCD Collaboration (T. Inoue et al.), Nucl. Phys. A 881, 28 (2012)

    Article  ADS  Google Scholar 

  25. T. Takatsuka, Prog. Theor. Phys. Suppl. 156, 84 (2004) and references therein

    Article  ADS  Google Scholar 

  26. I. Vidana, AIP Conf. Proc. 1645, 79 (2015)

    Article  ADS  Google Scholar 

  27. S. Nishizaki, Y. Yamamoto, T. Takatsuka, Prog. Theor. Phys. 105, 607 (2001)

    Article  ADS  Google Scholar 

  28. S. Nishizaki, Y. Yamamoto, T. Takatsuka, Prog. Theor. Phys. 108, 703 (2002)

    Article  ADS  Google Scholar 

  29. T. Takatsuka, S. Nishizaki, R. Tamagaki, AIP Conf. Proc. 1011, 209 (2008)

    Article  ADS  Google Scholar 

  30. Y. Yamamoto, T. Furumoto, N. Yasutake, T.A. Rijken, Phys. Rev. C 90, 045805 (2014) arXiv:1406.4332 [nucl-th]

    Article  ADS  Google Scholar 

  31. D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015) arXiv:1407.4448 [nucl-th]

    Article  ADS  Google Scholar 

  32. T. Katayama, K. Saito, Phys. Lett. B 747, 43 (2015) arXiv:1501.05419 [nucl-th]

    Article  ADS  Google Scholar 

  33. M. Baldo, G.F. Burgio, H.J. Schulze, Phys. Rev. C 61, 055801 (2000)

    Article  ADS  Google Scholar 

  34. K. Tsubakihara, H. Maekawa, H. Matsumiya, A. Ohnishi, Phys. Rev. C 81, 065206 (2010)

    Article  ADS  Google Scholar 

  35. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  36. T. Takatsuka, S. Nishizaki, Y. Yamamoto, R. Tamagaki, Prog. Theor. Phys. 115, 355 (2006) nucl-th/0601043

    Article  ADS  Google Scholar 

  37. B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)

    Article  ADS  Google Scholar 

  38. A.D. Linde, Phys. Lett. B 96, 289 (1980)

    Article  ADS  Google Scholar 

  39. T. Hatsuda, T. Kunihiro, Phys. Rev. Lett. 55, 158 (1985)

    Article  ADS  Google Scholar 

  40. C.E. DeTar, Phys. Rev. D 32, 276 (1985)

    Article  ADS  Google Scholar 

  41. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994)

    Article  ADS  Google Scholar 

  42. M. Buballa, Phys. Rept. 407, 205 (2005)

    Article  ADS  Google Scholar 

  43. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 44, 1422 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  44. G. 't Hooft, Phys. Rev. D 14, 3432 (1976) 18

    Article  ADS  Google Scholar 

  45. N.M. Bratovic, T. Hatsuda, W. Weise, Phys. Lett. B 719, 131 (2013) arXiv:1204.3788 [hep-ph]

    Article  ADS  Google Scholar 

  46. O. Lourenco, M. Dutra, T. Frederico, A. Delfino, M. Malheiro, Phys. Rev. D 85, 097504 (2012)

    Article  ADS  Google Scholar 

  47. T. Hatsuda, M. Tachibana, N. Yamamoto, G. Baym, Phys. Rev. Lett. 97, 122001 (2006)

    Article  ADS  Google Scholar 

  48. N. Yamamoto, M. Tachibana, T. Hatsuda, G. Baym, Phys. Rev. D 76, 074001 (2007)

    Article  ADS  Google Scholar 

  49. H. Abuki, G. Baym, T. Hatsuda, N. Yamamoto, Phys. Rev. D 81, 125010 (2010)

    Article  ADS  Google Scholar 

  50. J.P. Blaizot, J.Y. Ollitrault, Phys. Lett. B 191, 21 (1987)

    Article  ADS  Google Scholar 

  51. M. Asakawa, T. Hatsuda, Phys. Rev. D 55, 4488 (1997)

    Article  ADS  Google Scholar 

  52. A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 765, L5 (2013) arXiv:1205.6871 [nucl-th]

    Article  ADS  Google Scholar 

  53. F. Ozel, D. Psaltis, T. Guver, G. Baym, C. Heinke, S. Guillot, arXiv:1505.05155 [astro-ph.HE]

  54. M. Alford, M. Braby, M.W. Paris, S. Reddy, Astrophys. J. 629, 969 (2005) nucl-th/0411016

    Article  ADS  Google Scholar 

  55. R. Lastowiecki, D. Blaschke, T. Fischer, T. Klahn, arXiv:1503.04832 [nucl-th]

  56. M. Prakash, J.M. Lattimer, J.A. Pons, A.W. Steiner, S. Reddy, Lect. Notes Phys. 578, 364 (2001) astro-ph/0012136

    Article  ADS  Google Scholar 

  57. H.T. Janka, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012) arXiv:1206.2503 [astro-ph.SR]

    Article  ADS  Google Scholar 

  58. L.F. Roberts, Astrophys. J. 755, 126 (2012) arXiv:1205.3228 [astro-ph.HE]

    Article  ADS  Google Scholar 

  59. M. Prakash, J.R. Cooke, J.M. Lattimer, Phys. Rev. D 52, 661 (1995)

    Article  ADS  Google Scholar 

  60. K. Nakazato, K. Sumiyoshi, S. Yamada, Phys. Rev. D 77, 103006 (2008) arXiv:0804.0661 [astro-ph]

    Article  ADS  Google Scholar 

  61. G. Pagliara, M. Hempel, J. Schaffner-Bielich, Phys. Rev. Lett 103, 171102 (2009) arXiv:0907.3075 [astro-ph.HE]

    Article  ADS  Google Scholar 

  62. H. Chen, G.F. Burgio, H.J. Schulze, N. Yasutake, Astron. Astrophys. 551, A13 (2013) arXiv:1302.6074 [astro-ph.SR]

    Article  ADS  Google Scholar 

  63. M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010) arXiv:0911.4073 [nucl-th]

    Article  ADS  Google Scholar 

  64. N. Buyukcizmeci, A.S. Botvina, I.N. Mishustin, R. Ogul, M. Hempel, J. Schaffner-Bielich, F.-K. Thielemann, S. Furusawa et al., Nucl. Phys. A 907, 13 (2013) arXiv:1211.5990 [nucl-th]

    Article  ADS  Google Scholar 

  65. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  66. T. Takatsuka, S. Nishizaki, J. Hiura, Prog. Theor. Phys. 92, 779 (1994)

    Article  ADS  Google Scholar 

  67. T. Takatsuka, Prog. Theor. Phys. 95, 901 (1996)

    Article  ADS  Google Scholar 

  68. K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi, Y. Sekiguchi, M. Shibata, K. Taniguchi, Phys. Rev. D 88, 044026 (2013) arXiv:1307.5888 [astro-ph.HE]

    Article  ADS  Google Scholar 

  69. K. Hotokezaka, K. Kyutoku, M. Shibata, Phys. Rev. D 87, 044001 (2013) arXiv:1301.3555 [gr-qc]

    Article  ADS  Google Scholar 

  70. K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, Phys. Rev. D 91, 064060 (2015) arXiv:1502.03457 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kota Masuda.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, K., Hatsuda, T. & Takatsuka, T. Hyperon puzzle, hadron-quark crossover and massive neutron stars. Eur. Phys. J. A 52, 65 (2016). https://doi.org/10.1140/epja/i2016-16065-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16065-6

Keywords

Navigation