Skip to main content
Log in

Hyperon II: Properties of excited hyperons

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We report properties of \( \Lambda\) and \( \Sigma\) hyperon resonances formed in \( K^-\) induced reactions. Special emphasis is laid on the analysis of the three-body final states \( 2\pi^{0}\Lambda\) and \( 2\pi^{0}\Sigma\) and of the quasi-two-body final states \( \pi\Lambda (1520)\), \( \bar{K}\Delta (1232)\), \( \pi\Sigma (1385)\), \( \bar{K}^{\ast}N\), and \( \omega\Lambda\). We give pole positions of \( \Lambda\) and \( \Sigma\) hyperon resonances and transition residues from the \( K^{-}p\) initial to various final states as well as Breit-Wigner masses and widths and decay branching ratios. Twenty resonances and “bumps” reported in the Review of Particle Physics are not required in our fits, evidence for five new resonances is reported. The observed mass spectrum is compared to the spectrum calculated in the Bonn quark model. Three spin doublets, six \( \Lambda\) hyperons, are tentatively assigned to the SU(3) singlet system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Dalitz, S.F. Tuan, Phys. Rev. Lett. 2, 425 (1959)

    ADS  Google Scholar 

  2. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995)

    ADS  Google Scholar 

  3. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998)

    ADS  Google Scholar 

  4. J.A. Oller, U.G. Meißner, Phys. Lett. B 500, 263 (2001)

    ADS  Google Scholar 

  5. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meißner, Nucl. Phys. A 725, 181 (2003)

    ADS  Google Scholar 

  6. Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881, 98 (2012)

    ADS  Google Scholar 

  7. Z.H. Guo, J.A. Oller, Phys. Rev. C 87, 035202 (2013)

    ADS  Google Scholar 

  8. M. Mai, U.G. Meißner, Eur. Phys. J. A 51, 30 (2015)

    ADS  Google Scholar 

  9. K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C 98, 025201 (2018)

    ADS  Google Scholar 

  10. N. Kaiser, P.B. Siegel, W. Weise, Phys. Lett. B 362, 23 (1995)

    ADS  Google Scholar 

  11. T. Inoue, E. Oset, M.J. Vicente Vacas, Phys. Rev. C 65, 035204 (2002)

    ADS  Google Scholar 

  12. M. Mai, P.C. Bruns, U.G. Meißner, Phys. Rev. D 86, 094033 (2012)

    ADS  Google Scholar 

  13. M. Döring, E. Oset, U.-G. Meißner, Eur. Phys. J. A 46, 315 (2010)

    ADS  Google Scholar 

  14. Y. Huang, R. Wang, J. He, J.J. Xie, L. Geng, arXiv:1806.05422 [hep-ph]

  15. F.K. Guo, C. Hanhart, U.G. Meißner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

    ADS  Google Scholar 

  16. M.F.M. Lutz, C.L. Korpa, arXiv:1808.08695 [hep-ph]

  17. M. Matveev, A.V. Sarantsev, V.A. Nikonov, A.V. Anisovic, U. Thoma, E. Klempt, arXiv:1907.03645 [nucl-ex]

  18. S. Prakhov et al., Phys. Rev. C 69, 042202 (2004)

    ADS  Google Scholar 

  19. S. Prakhov et al., Phys. Rev. C 70, 034605 (2004)

    ADS  Google Scholar 

  20. W. Cameron et al., Nucl. Phys. B 131, 399 (1977)

    ADS  Google Scholar 

  21. P.J. Litchfield, R.J. Hemingway, P. Baillon, A. Putzer, H. Schleich, Nucl. Phys. B 74, 19 (1974)

    ADS  Google Scholar 

  22. P.J. Litchfield, R.J. Hemingway, P. Baillon, A. Albrecht, A. Putzer, Nucl. Phys. B 74, 39 (1974)

    ADS  Google Scholar 

  23. W. Cameron et al., Nucl. Phys. B 143, 189 (1978)

    ADS  Google Scholar 

  24. W. Cameron et al., Nucl. Phys. B 146, 327 (1978)

    ADS  Google Scholar 

  25. A. Brandstetter et al., Nucl. Phys. B 39, 13 (1972)

    ADS  Google Scholar 

  26. A. Nakkasyan, Nucl. Phys. B 93, 85 (1975)

    ADS  Google Scholar 

  27. B. Baccari et al., Nuovo Cimento A 41, 96 (1977)

    ADS  Google Scholar 

  28. U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 447 (2001)

    ADS  Google Scholar 

  29. H. Zhang, J. Tulpan, M. Shrestha, D.M. Manley, Phys. Rev. C 88, 035204 (2013)

    ADS  Google Scholar 

  30. H. Zhang, J. Tulpan, M. Shrestha, D.M. Manley, Phys. Rev. C 88, 035205 (2013)

    ADS  Google Scholar 

  31. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 90, 065204 (2014)

    ADS  Google Scholar 

  32. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 92, 025205 (2015) Phys. Rev. C 95

    ADS  Google Scholar 

  33. H. Kamano, T.-S.H. Lee, Phys. Rev. C 94, 065205 (2016)

    ADS  Google Scholar 

  34. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  35. Rutherford-London Collaboration (G.P. Gopal et al.), Nucl. Phys. B 119, 362 (1977)

    ADS  Google Scholar 

  36. M.D. Jones, Nucl. Phys. B 73, 141 (1974)

    ADS  Google Scholar 

  37. N.P. Samios, M. Goldberg, B.T. Meadows, Rev. Mod. Phys. 46, 49 (1974)

    ADS  Google Scholar 

  38. V. Guzey, M.V. Polyakov, Annalen Phys. 13, 673 (2004)

    ADS  Google Scholar 

  39. V. Guzey, M.V. Polyakov, arXiv:hep-ph/0512355

  40. T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

    ADS  Google Scholar 

  41. M. Mai, U.G. Meißner, Nucl. Phys. A 900, 51 (2013)

    ADS  Google Scholar 

  42. R. Molina, M. Döring, Phys. Rev. D 94, 056010 (2016)

    ADS  Google Scholar 

  43. F.Y. Dong, B.X. Sun, J.L. Pang, Chin. Phys. C 41, 074108 (2017)

    ADS  Google Scholar 

  44. K.S. Myint, Y. Akaishi, M. Hassanvand, T. Yamazaki, Prog. Theor. Exp. Phys. 2018, 073D01 (2018)

    Google Scholar 

  45. M. Hassanvand, Y. Akaishi, T. Yamazaki, Phys. Rev. C 92, 045202 (2015)

    ADS  Google Scholar 

  46. R.J. Hemingway, Nucl. Phys. B 253, 742 (1985)

    ADS  Google Scholar 

  47. CLAS Collaboration (K. Moriya et al.), Phys. Rev. C 87, 035206 (2013)

    Google Scholar 

  48. CLAS Collaboration (K. Moriya et al.), Phys. Rev. Lett. 112, 082004 (2014)

    ADS  Google Scholar 

  49. SIDDHARTA Collaboration (M. Bazzi et al.), Phys. Lett. B 704, 113 (2011)

    ADS  Google Scholar 

  50. M. Bazzi et al., Nucl. Phys. A 881, 88 (2012)

    ADS  Google Scholar 

  51. D.N. Tovee et al., Nucl. Phys. B 33, 493 (1971)

    ADS  Google Scholar 

  52. R.J. Nowak et al., Nucl. Phys. B 139, 61 (1978)

    ADS  Google Scholar 

  53. A.V. Anisovich, A.V. Sarantsev, V.A. Nikonov, V. Burkert, R.A. Schumacher, U. Thoma, E. Klempt, Hyperon III: $K^{-}p - \pi\Sigma$ coupled-channel dynamics in the $\Lambda (1405)$ mass region, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Klempt.

Additional information

Communicated by N. Kalantar

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be available at https://pwa.hiskp.uni-bonn.de]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarantsev, A.V., Matveev, M., Nikonov, V.A. et al. Hyperon II: Properties of excited hyperons. Eur. Phys. J. A 55, 180 (2019). https://doi.org/10.1140/epja/i2019-12880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12880-5

Navigation