Skip to main content

Advertisement

Log in

Consistent Skyrme parametrizations constrained by GW170817

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The high-density behavior of stellar matter composed of nucleons and leptons under \(\beta \) equilibrium and charge neutrality conditions is studied with the Skyrme parametrizations shown to be consistent (Consistent Skyrme Parametrizations, CSkP) with nuclear matter, pure neutron matter, symmetry energy and its derivatives in a set of 11 constraints [Dutra et al., Phys. Rev. C 85, 035201 (2012)]. The predictions of these parametrizations on the tidal deformabilities related to the GW170817 event are also examined. The CSkP that produce massive neutron stars give a range of \(11.86~\text{ km } \leqslant R_{1.4} \leqslant 12.55~\text{ km }\) for the canonical star radius, in agreement with other theoretical predictions. It is shown that the CSkP are compatible with the region of masses and radii obtained from the analysis of recent data from LIGO and Virgo Collaboration (LVC). A correlation between dimensionless tidal deformability and radius of the canonical star is found, namely, \(\varLambda _{1.4} \approx 3.16\times 10^{-6}R_{1.4}^{7.35}\), with results for the CSkP compatible with the recent range of \(\varLambda _{1.4}=190_{-120}^{+390}\) from LVC. An analysis of the \(\varLambda _1\times \varLambda _2\) graph shows that all the CSkP are compatible with the recent bounds obtained by LVC. Finally, the universal correlation between the moment of inertia and the deformability of a neutron star, named the I-Love relation, is verified for the CSkP; it is also shown to be consistent with the prediction for the moment of inertia of the PSR J0737-3039 primary component pulsar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. J.M. Lattimer, M. Prakash, Science 304, 536 (2004)

    Article  ADS  Google Scholar 

  2. F. Ozel, Nature 441, 1115 (2006)

    Article  ADS  Google Scholar 

  3. M.B. Tsang, J.R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C.J. Horowitz, J. Lee, W.G. Lynch, Z. Kohley, R. Lemmon, P. Möller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A.W. Steiner, I. Vidaña, S.J. Yennello, Phys. Rev. C. 86, 015803 (2012)

    Article  ADS  Google Scholar 

  4. M. Baldo, G.F. Burgio, Prog. Part. Nucl. Phys 91, 203 (2016)

    Article  ADS  Google Scholar 

  5. J.M. Lattimer, M. Prakash, Phys. Rep. 621, 127 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Oertel, M. Hempel, T. Klahn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

    Article  ADS  Google Scholar 

  7. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  8. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  9. Tanja Hinderer, Benjamin D. Lackey, Ryan N. Lang, Jocelyn S. Read, Phys. Rev. D 81, 123016 (2010)

    Article  ADS  Google Scholar 

  10. Philipe Landry, Bharat Kumar, Astrophys. J. Lett. 868, L22 (2018)

    Article  ADS  Google Scholar 

  11. K. Yagi, N. Yunes, Science 341, 365 (2013)

    Article  ADS  Google Scholar 

  12. James M. Lattimer, Madappa Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  13. Jocelyn S. Read, Benjamin D. Lackey, Benjamin J. Owen, John L. Friedman, Phys. Rev. D 79, 124032 (2009)

    Article  ADS  Google Scholar 

  14. B.P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration). Phys. Rev. Lett. 119, 161101 (2017)

  15. B.P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration). Phys. Rev. Lett. 121, 161101 (2018)

  16. J. Aasi et al. (LIGO Scientific Collaboration). Class. Quant. Grav. 32, 074001 (2015)

  17. F. Acernese et al. (Virgo Collaboration). Class. Quant. Grav. 32, 024001 (2015)

  18. B.P. Abbott et al., Astrophys. J. 848, L13 (2017)

    Article  ADS  Google Scholar 

  19. A. Goldstein et al., Astrophys. J. 848, L14 (2017)

    Article  ADS  Google Scholar 

  20. B.P. Abbott et al., Astrophys. J. 848, L12 (2017)

    Article  ADS  Google Scholar 

  21. D.A. Coulter et al., Science 358, 1556 (2017)

    Article  ADS  Google Scholar 

  22. E. Troja et al., Nature 551, 71 (2017)

    Article  ADS  Google Scholar 

  23. D. Haggard et al., Astrophys. J. Lett. 848, L25 (2017)

    Article  ADS  Google Scholar 

  24. G. Hallinan et al., Science 358, 1579 (2017)

    Article  ADS  Google Scholar 

  25. B. Kumar, S.K. Biswal, S.K. Patra, Phys. Rev. C. 95, 015801 (2017)

    Article  ADS  Google Scholar 

  26. T. Hinderer, Astrophys. J. 677, 1216 (2008)

    Article  ADS  Google Scholar 

  27. Thibault Damour, Alessandro Nagar, Phys. Rev. D 80, 084035 (2009)

    Article  ADS  Google Scholar 

  28. Taylor Binnington, Eric Poisson, Phys. Rev. D 80, 084018 (2009)

    Article  ADS  Google Scholar 

  29. T.H.R. Skyrme, Proc. Roy. Sco. Lond. A 260, 127 (1961)

    ADS  MathSciNet  Google Scholar 

  30. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  31. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  32. J.R. Stone, P.G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007)

    Article  ADS  Google Scholar 

  33. M. Dutra, O. Lourenço, J.S. Sá Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012)

    Article  ADS  Google Scholar 

  34. B.K. Agrawal, S.K. Dhiman, R. Kumar, Phys. Rev. C 73, 034319 (2006)

    Article  ADS  Google Scholar 

  35. B.K. Agrawal, S. Shlomo, V.K. Au, Phys. Rev. C 72, 014310 (2005)

    Article  ADS  Google Scholar 

  36. L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73, 014313 (2006)

    Article  ADS  Google Scholar 

  37. L.W. Chen, C.M. Ko, B.-A. Li, J. Xu, Phys. Rev. C 82, 024321 (2010)

    Article  ADS  Google Scholar 

  38. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005)

    Article  ADS  Google Scholar 

  39. B. A. Brown, private communication

  40. M. Rashdan, Mod. Phys. Lett. A 15, 1287 (2000)

    Article  ADS  Google Scholar 

  41. B.A. Brown, G. Shen, G.C. Hillhouse, J. Meng, A. Trzcińska, Phys. Rev. C 76, 034305 (2007)

    Article  ADS  Google Scholar 

  42. P.A.M. Guichon, H.H. Matevosyan, N. Sandulescu, A.W. Thomas, Nucl. Phys. A 772, 1 (2006)

    Article  ADS  Google Scholar 

  43. F. Tondeur, M. Brack, M. Farine, J.M. Pearson, Nucl. Phys. A 420, 297 (1984)

    Article  ADS  Google Scholar 

  44. J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Phys. Rev. C 68, 034324 (2003)

    Article  ADS  Google Scholar 

  45. P. Klüpfel, P.-G. Reinhard, T.J. Bürvenich, J.A. Maruhn, Phys. Rev. C 79, 034310 (2009)

    Article  ADS  Google Scholar 

  46. B.M. Santos, M. Dutra, O. Lourenço, A. Delfino, Phys. Rev. C 90, 035203 (2014)

    Article  ADS  Google Scholar 

  47. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providência, S. Typel, J.R. Stone, Phys. Rev. C 90, 055203 (2014)

    Article  ADS  Google Scholar 

  48. Odilon Lourenço, Mariana Dutra, César H. Lenzi, César V. Flores, Débora P. Menezes, Phys. Rev. C 99, 045202 (2019)

    Article  ADS  Google Scholar 

  49. T. Malik, N. Alam, M. Fortin, C. Providência, B.K. Agrawal, T.K. Jha, B. Kumar, S.K. Patra, Phys. Rev. C. 98, 035804 (2018)

    Article  ADS  Google Scholar 

  50. F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018)

    Article  ADS  Google Scholar 

  51. N.K. Glendenning, Compact Stars, 2nd edn. (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  52. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  53. J. Piekarewicz, F.J. Fattoyev, Phys. Rev. C 99, 045802 (2019)

    Article  ADS  Google Scholar 

  54. T. Malik, B.K. Agrawal, J.N. De, S.K. Samaddar, C. Providência, C. Mondal, T.K. Jha, Phys. Rev. C 99, 052801(R) (2019)

    Article  ADS  Google Scholar 

  55. J. Carriere, C. Horowitz, J. Piekarewicz, Astrophys. J. 593, 463 (2003)

    Article  ADS  Google Scholar 

  56. C. Gonzalez-Boquera, M. Centelles, X. Viñas, L.M. Robledo, Phys. Lett. B 779, 195 (2018)

    Article  ADS  Google Scholar 

  57. C. Gonzalez-Boquera, M. Centelles, X. Viñas, A. Rios, Phys. Rev. C 96, 065806 (2017)

    Article  ADS  Google Scholar 

  58. J. Xu, L.-W. Chen, B.-A. Li, H.-R. Ma, Astrophys. J. 697, 1549 (2009)

    Article  ADS  Google Scholar 

  59. C. Gonzalez-Boquera, M. Centelles, X. Viñas, T. R. Routray, arXiv:1904.06566 (2019)

  60. S.S. Avancini, L. Brito, Ph Chomaz, D.P. Menezes, C. Providência, Phys. Rev. C 74, 024317 (2006)

    Article  ADS  Google Scholar 

  61. J.B. Hartle, Astrophys. J. 150, 1005 (1967)

    Article  ADS  Google Scholar 

  62. K. Yagi, N. Yunes, Phys. Rev. D 88, 023009 (2013)

    Article  ADS  Google Scholar 

  63. M. Dutra, O. Lourenço, D.P. Menezes, Phys. Rev. C 93, 025806 (2016)

    Article  ADS  Google Scholar 

  64. M. Dutra, O. Lourenço, D.P. Menezes, Phys. Rev. C. 94, 049901(E) (2016)

    Article  ADS  Google Scholar 

  65. Young-Min Kim, Yeunhwan Lim, Kyujin Kwak, Chang Ho Hyun, Chang-Hwan Le, Phys. Rev. C 98, 065805 (2018)

    Article  ADS  Google Scholar 

  66. N. Chamel, A.F. Fantina, J.M. Pearson, S. Goriely, Phys. Rev. C 84, 062802(R) (2011)

    Article  ADS  Google Scholar 

  67. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82, 035804 (2010)

    Article  ADS  Google Scholar 

  68. A.F. Fantina, N. Chamel, J.M. Pearson, S. Goriely, Astron. Astrophys. 559, A128 (2013)

    Article  ADS  Google Scholar 

  69. L. Mornas, Eur. Phys. J A 24, 293 (2005)

    Article  ADS  Google Scholar 

  70. Jérôme Margueron, Rudiney Hoffmann Casali, Francesca Gulminelli, Phys. Rev. C 97, 025805 (2018)

    Article  ADS  Google Scholar 

  71. Jérôme Margueron, Rudiney Hoffmann Casali, Francesca Gulminelli, Phys. Rev. C 97, 025806 (2018)

    Article  ADS  Google Scholar 

  72. B. Behera, T.R. Routray, S.K. Tripathy, J. Phys. G: Nucl. Part. Phys. 36, 125105 (2009)

    Article  ADS  Google Scholar 

  73. B. Behera, X. Vinas, M. Bhuyan, T.R. Routray, B.K. Sharma, S.K. Patra, J. Phys. G 40, 095105 (2013)

    Article  ADS  Google Scholar 

  74. P.G. Krastev, B.-A. Li, J. Phys. G 46, 074001 (2019)

    Article  ADS  Google Scholar 

  75. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  76. J. Antoniadis, P.C.C. Freire, N. Wex et al., Science 340, 448 (2013)

    Article  ADS  Google Scholar 

  77. J. Nättilä, A.W. Steiner, J.J.E. Kajava, V.F. Suleimanov, J. Poutanen, Astron. Astrophys. 591, A25 (2016)

    Article  ADS  Google Scholar 

  78. A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)

    Article  ADS  Google Scholar 

  79. H. T. Cromartie, et. al., Nature Astron. Lett. (2019); arXiv:1904.06759

  80. Yeunhwan Lim, Jeremy W. Holt, Phys. Rev. Lett. 121, 062701 (2018)

    Article  ADS  Google Scholar 

  81. Elias R. Most, Lukas R. Weih, Luciano Rezzolla, Jürgen Schaffner-Bielich, Phys. Rev. Lett. 120, 261103 (2018)

    Article  ADS  Google Scholar 

  82. Nai-Bo Zhang, Bao-An Li, J. Phys. G: Nucl. Part. Phys 46, 014002 (2019)

    Article  ADS  Google Scholar 

  83. Carolyn A. Raithel, Feryal Ozel, Dimitrios Psaltis, Astrophys. J. Lett. 857, L23 (2018)

    Article  ADS  Google Scholar 

  84. I. Tews, J. Margueron, S. Reddy, Phys. Rev. C 98, 045804 (2018)

    Article  ADS  Google Scholar 

  85. M.B. Tsang, C.Y. Tsang, P. Danielewicz, W.G. Lynch, F.J. Fattoyev, arXiv:1811.04888

  86. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120, 172703 (2018)

    Article  ADS  Google Scholar 

  87. O. Lourenço, M. Dutra, C.H. Lenzi, M. Bhuyan, S.K. Biswal, B.M. Santos, Astrophys. J. 882, 67 (2019)

    Article  ADS  Google Scholar 

  88. B.P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration). Phys. Rev. X 9, 011001 (2019)

  89. S.S. Avancini, L. Brito, J.R. Marinelli, D.P. Menezes, M.M.W. de Moraes, C. Providência, A.M. Santos, Phys. Rev. C 79, 035804 (2009)

    Article  ADS  Google Scholar 

  90. O. Lourenço, C.H. Lenzi, M. Dutra, T. Frederico, M. Bhuyan, R. Negreiros, C.V. Flores, G. Grams, D.P. Menezes. arXiv:1905.07308

  91. C.Y. Tsang, M.B. Tsang, P. Danielewicz, F.J. Fattoyev, W.G. Lynch, Phys. Lett. B 796, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is a part of the project INCT-FNA Proc. No. 464898/2014-5, partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grants 301155/2017-8 (D. P. M.), 310242/2017-7 and 406958/2018-1 (O. L.) and 433369/2018-3 (M. D.), by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under thematic projects No. 2013/26258-4 (O. L.), 2017/05660-0 (O. L., M. D., M. B.), 2014/26195-5 (M. B.), and National key R&D Program of China, grant No. 2018YFA0404402 (S. K. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Lourenço.

Additional information

Communicated by L. Tolos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço, O., Dutra, M., Lenzi, C.H. et al. Consistent Skyrme parametrizations constrained by GW170817. Eur. Phys. J. A 56, 32 (2020). https://doi.org/10.1140/epja/s10050-020-00040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00040-z

Navigation