Skip to main content
Log in

Status on \(^{\mathbf {12}}\mathbf {C}+{}^{\mathbf {12}}{\mathbf {C}}\) fusion at deep subbarrier energies: impact of resonances on astrophysical \(S^{*}\) factors

  • Letter to the Editor
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Since the discovery of molecular resonances in \(^{12}\hbox {C}+^{12}\hbox {C}\) in the early sixties a great deal of research work has been undertaken to study \(\alpha \)-clustering and resonant effects of the fusion process at sub-Coulomb barrier energies. The modified astrophysical \(S^{*}\) factors of \(^{12}\hbox {C}+^{12}\hbox {C}\) fusion have been extracted from direct fusion measurements at deep sub-barrier energies near the Gamow window. They were also obtained by the indirect Trojan horse method (THM). A comparison of direct measurements and the THM, which elucidates problems in the analysis of the THM, is discussed in this Letter to the Editor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in the published article.]

References

  1. K. Mori et al., MNRAS Lett. 482, L70 (2019) arXiv:1810.01025 (2018)

  2. H.W. Becker et al., Z. Phys. A 303, 305 (1981)

    Article  ADS  Google Scholar 

  3. K.U. Kettner, H. Lorenz-Wirzba, C. Rolfs, Z. Phys. A 298, 65 (1980)

    Article  ADS  Google Scholar 

  4. E.F. Aguilera et al., Phys. Rev. C 73, 064601 (2006)

    Article  ADS  Google Scholar 

  5. T. Spillane et al., Phys. Rev. Lett. 98, 122501 (2007)

    Article  ADS  Google Scholar 

  6. J.R. Patterson, H. Winkler, C.S. Zaidins, Astrophys. J. 157, 367 (1969)

    Article  ADS  Google Scholar 

  7. C.L. Jiang et al., Phys. Rev. C 97, 012801(R) (2018)

    Article  ADS  Google Scholar 

  8. A. Tumino et al., Nature 557, 687 (2018)

    Article  ADS  Google Scholar 

  9. G.R. Caughlan, W.A. Fowler, At. Data Nucl. Data Tables 40, 283 (1988)

    Article  ADS  Google Scholar 

  10. H. Esbensen, X. Tang, C.L. Jiang, Phys. Rev. C 84, 064613 (2011)

    Article  ADS  Google Scholar 

  11. A. Diaz-Torres, M. Wiescher, Phys. Rev. C 97, 055802 (2018)

    Article  ADS  Google Scholar 

  12. L.R. Gasques et al., Phys. Rev. C 76, 035802 (2007)

    Article  ADS  Google Scholar 

  13. Le Hoang Chien et al., Phys. Rev. C 98, 064604 (2018)

    Article  ADS  Google Scholar 

  14. Dao T. Khoa et al., Nucl. Sci. Tech. 29, 182 (2018)

    Article  Google Scholar 

  15. K. Godbey, C. Simenel, A.S. Umar, Phys. Rev. C 100, 024619 (2019)

    Article  ADS  Google Scholar 

  16. M. Notani et al., Phys. Rev. C 85, 014607 (2012)

    Article  ADS  Google Scholar 

  17. C.L. Jiang et al., Phys. Rev. Lett. 110, 072701 (2013)

    Article  ADS  Google Scholar 

  18. C.L. Jiang et al., Phys. Rev. C 75, 015803 (2007)

    Article  ADS  Google Scholar 

  19. N.T. Zhang, Phys. Lett. B 801, 135170 (2020)

    Article  Google Scholar 

  20. M. Wiescher, Priv. Commun. (2019) (under review)

  21. A.M. Mukhamedzhanov, D.Y. Pang, A.S. Kadyrov, Phys. Rev. C 99, 064618 (2019)

    Article  ADS  Google Scholar 

  22. X. Tang, in The 12 C–12 C Fusion Reaction at STELLAr Energies, ed. by A. Formicola, M. Junker, L. Gialanella, G. Imbriani. Proceeding of 15th International Symposium on Nuclei in the Cosmos, Springer Proceedings in Physics, vol. 13 (2019), p. 219

  23. G. Baur, Phys. Lett. B 178, 135 (1986)

    Article  ADS  Google Scholar 

  24. C. Spitaleri et al., Phys. Rev. C 60, 055802 (1999)

    Article  ADS  Google Scholar 

  25. C. Spitaleri et al., Eur. Phys. J. A 55, 161 (2019)

    Article  ADS  Google Scholar 

  26. R.E. Tribble et al., Rep. Prog. Phys. 77, 106901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. K. Nagatani, Phys. Lett. B 35, 286 (1971)

    Article  ADS  Google Scholar 

  28. R.W. Zurmuhle et al., Phys. Rev. C 49, 2549 (1994)

    Article  ADS  Google Scholar 

  29. K.P. Erb, D.A. Bromley, Phys. Rev. C 23, 2781 (1981)

    Article  ADS  Google Scholar 

  30. F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954)

    Article  ADS  Google Scholar 

  31. M. Freer et al., Rev. Mod. Phys. 90, 035004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Rowley, K. Hagino, Phys. Rev. C 91, 044617 (2015)

    Article  ADS  Google Scholar 

  33. M. Assuncao, P. Descouvemont, Phys. Lett. B 723, 355 (2013)

    Article  ADS  Google Scholar 

  34. G.V. Rogachev, Priv. Commun. (2019) (work in progress at Texas A&M University)

Download references

Acknowledgements

A.M.M. acknowledges a support from the U.S. DOE Grant No. DE-FG02-93ER40773 and the NNSA Grant No. DENA000384. X.T. is supported in part by the National Key Research and Development program (MOST 2016YFA0400501) from the Ministry of Science and Technology of China and from the key research program (XDPB09-2). A.M.M. thanks Dr. Goldberg for very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mukhamedzhanov.

Additional information

Communicated by N. Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, C., Mukhamedzhanov, A.M. & Tang, X. Status on \(^{\mathbf {12}}\mathbf {C}+{}^{\mathbf {12}}{\mathbf {C}}\) fusion at deep subbarrier energies: impact of resonances on astrophysical \(S^{*}\) factors. Eur. Phys. J. A 56, 87 (2020). https://doi.org/10.1140/epja/s10050-020-00075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00075-2

Navigation