Skip to main content
Log in

Some properties of Wigner 3j coefficients: non-trivial zeros and connections to hypergeometric functions

A tribute to Jacques Raynal

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The contribution of Jacques Raynal to angular-momentum theory is highly valuable. In the present article, I intend to recall the main aspects of his work related to Wigner 3j symbols. It is well known that the latter can be expressed with a hypergeometric series. The polynomial zeros of the 3j coefficients were initially characterized by the number of terms of the series minus one, which is the degree of the coefficient. A detailed study of the zeros of the 3j coefficient with respect to the degree n for \(J=a+b+c\le 240\) (a, b and c being the angular momenta in the first line of the 3j symbol) by Raynal revealed that most zeros of high degree had small magnetic quantum numbers. This led him to define the order m to improve the classification of the zeros of the 3j coefficient. Raynal did a search for the polynomial zeros of degree 1 to 7 and found that the number of zeros of degree 1 and 2 are infinite, though the number of zeros of degree larger than 3 decreases very quickly as the degree increases. Based on Whipple’s symmetries of hypergeometric \(_3F_2\) functions with unit argument, Raynal generalized the Wigner 3j symbols to any arguments and pointed out that there are twelve sets of ten formulas (twelve sets of 120 generalized 3j symbols) which are equivalent in the usual case. In this paper, we also discuss other aspects of the zeros of 3j coefficients, such as the role of Diophantine equations and powerful numbers, or the alternative approach involving Labarthe patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The work presented here is theoretical and all the required formulas are given in the article.]

Notes

  1. In Refs. [8, 14], the authors have a factor \((n+1)!\) in the numerator of the argument of the sum in Eq. (67). Such a factor was included in the normalization coefficient by Labarthe. Both expressions are actually equivalent.

References

  1. A.E. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957)

    MATH  Google Scholar 

  2. L.C. Biedenharn and J.D. Louck, The Racah-Wigner Algebra in Quantum Theory (Encyclopedia of Mathematics and its Applications, vol. 9), ed. G. C. Rota (Reading, MA: Addison-Wesley, 1981)

  3. J.D. Louck, New recursion relation for the Clebsch-Gordan coefficients. Phys. Rev. 110, 815–816 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  4. K. Schulten, R.G. Gordon, Recursive evaluation of \(3j\) and \(6j\) coefficients. Comput. Phys. Commun. 11, 269–278 (1976)

    ADS  Google Scholar 

  5. J.H. Luscombe, M. Luban, Simplified recursive algorithm for Wigner \(3j\) and \(6j\) symbols. Phys. Rev. E 57, 7274–7277 (1998)

    ADS  Google Scholar 

  6. I. Nasser, Y. Hahn, Nested form for Clebsch-Gordan coefficients and rotation matrices. Phys. Rev. A 35, 2902–2907 (1987)

    ADS  MathSciNet  Google Scholar 

  7. A.J. Stone, C.P. Wood, Root-rational-fraction package for exact calculation of vector-coupling coefficients. Comput. Phys. Commun. 21, 195–205 (1980)

    ADS  Google Scholar 

  8. S.-T. Lai, Y.-N. Chiu, Exact computation of the \(3-j\) and \(6-j\) symbols. Comput. Phys. Commun. 61, 350–360 (1990)

    ADS  MATH  Google Scholar 

  9. H.T. Johansson, C. Forssén, Fast and accurate evaluation of Wigner \(3j\), \(6j\), and \(9j\) symbols using prime factorization and multiword integer arithmetic. SIAM J. Sci. Comput. 38, A376–A384 (2016)

    MATH  Google Scholar 

  10. I.I. Guseinov, A. Özmen, U. Atav, H. Yüksel, Computation of Clebsch-Gordan and Gaunt coefficients using binomial coefficients. J. Comput. Phys. 122, 343–347 (1995)

    ADS  MATH  Google Scholar 

  11. L. Wei, Unified approach for exact calculation of angular momentum coupling and recoupling coefficients. Comput. Phys. Commun. 120, 222–230 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  12. C.C.J. Roothaan, New algorithms for calculating \(3n-j\) symbols. Int. J. Quant. Chem. 27, 13–24 (1993)

    Google Scholar 

  13. R.E. Tuzun, P. Burkhardt, D. Secrest, Accurate computation of individual and tables of \(3-j\) and \(6-j\) symbols. Comput. Phys. Commun. 112, 112–148 (1998)

    ADS  MATH  Google Scholar 

  14. C.C.J. Roothaan, S.-T. Lai, Calculation of \(3n-j\) Symbols by Labarthe’s Method. Int. J. Quant. Chem. 63, 57–64 (1997)

    Google Scholar 

  15. D. Ritchie, High Performance Algorithms for Molecular Shape Recognition, Habilitation à diriger des recherches, Université Henri Poincaré-Nancy I (2011). https://tel.archives-ouvertes.fr/tel-00587962

  16. D. Ritchie, Whole Number Recursion Formulae for High Order Clebsch-Gordan Coupling Coefficients, hal-01851097 (2018)

  17. R. Suresh, K. Srinivasa Rao, On recurrence relations for the \(3-j\) coefficient. Appl. Mathe. Inf. Sci. 5, 44–52 (2011)

    MathSciNet  MATH  Google Scholar 

  18. G. Xu, Improved recursive computation of clebsch-Gordan coefficients. J. Quant. Spectrosc. Radiat. Transf. 254, 107210 (2020)

    Google Scholar 

  19. T. Koornwinder, Clebsch-Gordan coefficients for SU(2) and Hahn polynomials. Nieuw. Arch. Wiskd. 29, 140–155 (1981)

    MathSciNet  MATH  Google Scholar 

  20. B.R. Judd, Topics in Atomic Theory, in Topics in Atomic and Nuclear Theory (Christchurch, New Zealand, Caxton, 1970), pp. 1–60

  21. A. de-Shalit, I. Talmi, Nuclear Shell Theory (Academic, New York, 1963)

    Google Scholar 

  22. J.N. Ginocchio, A schematic model for monopole and quadrupole pairing in nuclei. Ann. Phys. 126, 234–276 (1980)

    ADS  MathSciNet  Google Scholar 

  23. S.H. Koozekanani, L.C. Biedenharn, Non-trivial zeros of the Racah (\(6j\)) coefficient. Rev. Mex. Fis. 23, 327–340 (1974)

    Google Scholar 

  24. J. Van der Jeugt, G. Van den Berghe, H. De Meyer, Boson realization of the Lie algebra \(F_4\) and non-trivial zeros of \(6j\)-symbols. J. Phys. A: Math. Gen. 16, 1377–1382

  25. H. De Meyer, G. Van den Berghe, J. Van der Jeugt, Realizations of \(F_4\) in \(SO(3)\times SO(3)\) bases and structural zeros of the \(6j\)-symbol. J. Math. Phys. 25, 751–754 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  26. G. Van den Berghe, H. De Meyer, J. Van der Jeugt, Tensor operator realization of \(E_6\) and structural zeros of the \(6j\)-symbol. J. Math. Phys. 25, 2585–2588 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  27. J. Van der Jeugt, Tensor product of group representations and structural zeros of Racah coefficients. J. Math. Phys. 33, 2417–2421 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  28. M.J. Bowick, Regge symmetries and null \(3j\) and \(6j\) symbols. Thesis, University of Canterbury, Christchurch, New Zealand

  29. T. Regge, Symmetry properties of Clebsch-Gordan coefficients. Nuovo Cimento 10, 544–545 (1958)

    MATH  Google Scholar 

  30. L.A. Shelepin, On the symmetry of the Clebsch-Gordan coefficients. J. Exp. Theor. Phys. (U.S.S.R.) 46, 1033–1038 (1964)

    MathSciNet  MATH  Google Scholar 

  31. L.A. Shelepin, On the symmetry of the Clebsch–Gordan coefficients. Sov. Phys. JETP 19, 702–705 (1964)

    MathSciNet  MATH  Google Scholar 

  32. K. Srinivasa Rao, V. Rajeswari, On the polynomial zeros of the Clebsch–Gordan and Racah coefficients. J. Phys. A: Math. Gen. 17, L243–L246 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  33. S. Datta Majumdar, Canonical forms of the generalized hypergeometric series for the \(3j\) and the \(6j\) symbol. Czech. J. Phys. B 34, 15–21 (1984)

    ADS  MathSciNet  Google Scholar 

  34. K. Srinivasa Rao, A note on the classification of the zeros of angular momentum coefficients. J. Math. Phys. 26, 2260–2261 (1985)

    ADS  MathSciNet  Google Scholar 

  35. K. Srinivasa Rao, J. Van der Jeugt, J. Raynal, R. Jagannathan, V. Rajeswari, Group theoretical basis for the terminating \(_3F_2(1)\) series. J. Phys. A: Math. Gen. 25, 861–876 (1992)

    ADS  MATH  Google Scholar 

  36. J. D. Louck, Survey of zeros of \(3j\) and \(6j\) coefficients by diophantine equation methods, proceedings of the International symposium group theory and special symmetries in nuclear physics, Ann Arbor, MI (United States), 19-21 Sep. 1991, Report No.: LA-UR-91-3380 (World Scientific Publishing Co., 1991)

  37. K.R. Matthews, The diophantine equation \(x^2-Dy^2=N\), \(D>1\), in integers. Expositiones Mathematicae 18, 323–331 (2000)

    MathSciNet  MATH  Google Scholar 

  38. J.D. Louck, P.R. Stein, Weight-2 zeros of \(3j\) coefficients and the Pell equation. J. Math. Phys. 28, 2812–2823 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  39. J. Raynal, J. Van der Jeugt, K. Srinivasa Rao, V. Rajeswari, On the zeros of \(3j\) coefficients: polynomial degree versus recurrence order. J. Phys. A: Math. Gen. 26, 2607–2623 (1993)

    ADS  MATH  Google Scholar 

  40. R. W. Donley Jr., Central Values for Clebsch-Gordan Coefficients. In: Nathanson M. (eds) Combinatorial and Additive Number Theory III. CANT 2018. Springer Proceedings in Mathematics & Statistics, vol 297. Springer, Cham, pp. 75-100 (2020)

  41. R. W. Donley Jr., W. G. Kim, A rational theory of Clebsch–Gordan coefficients. In: Representation theory and harmonic analysis on symmetric spaces. American Mathematical Society, Providence. Contemp. Math. 714, 115–130 (2018)

  42. R.W. Donley Jr., Partitions for semi-magic squares of size three. arXiv:1911.00977v1

  43. J. Raynal, On the definition and properties of generalized \(3-j\) symbols. J. Math. Phys. 19, 467–476 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  44. A.P. Yutsis, A.A. Bandzaitis, The theory of angular momentum, Teoriia Momenta Kolichestva Dvizheniia v Kvantovoi Mekhanike (Mintis, Vilnius, 1965)

    Google Scholar 

  45. P.E. Bryant, A.H. Jahn, Tables of Wigner \(3j\)-symbols with a note on new parameters for the Wigner \(3j\)-symbol, Research Report 60-1 University of Southampton (1960)

  46. H. Cohen, Number Theory Volume I: Elementary and Algebraic Methods for Diophantine Equations (Springer, 2007)

  47. A. Choudhry, Some Diophantine problems concerning equal sums of integers and their cubes. Hardy-Ramanujan Journal 33, 59–70 (2010)

    MathSciNet  MATH  Google Scholar 

  48. W.A. Beyer, J.D. Louck, P.R. Stein, Zeros of Racah Coefficients and the Pell Equation. Acta Applicandae Mathematicae 7, 257–311 (1986)

    MathSciNet  MATH  Google Scholar 

  49. J.-J. Labarthe, Parametrization of the linear zeros of \(6j\) coefficients. J. Math. Phys. 27, 2964–2965 (1986)

    ADS  MathSciNet  Google Scholar 

  50. J.-J. Labarthe, The hidden angular momenta of the coupling-recoupling coefficients of SU(2). J. Phys. A: Math. Gen. 33, 763–778 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  51. S.-T. Lai, Y.-C. Chiu, R. Letelier, The primitive \(L-\)pattern of angular momentum recoupling coefficients. J. Math. Chem. 37, 1–16 (2005)

    MathSciNet  MATH  Google Scholar 

  52. K.S. Rao, V. Rajeswari, Quantum theory of angular momentum: Selected topics (Narosa publishing house, Springer, Berlin, 1993)

    MATH  Google Scholar 

  53. G. Racah, Theory of Complex Spectra. I, Phys. Rev. 62, 438–462 (1942)

    ADS  Google Scholar 

  54. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Google Scholar 

  55. B.L. Van der Waerden, Die Gruppentheoretische Methode in der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  56. E. Wigner, Group theory and its applications to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959) (Translated by J. J. Griffin, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg, Braunschweig, 1931)

  57. S.D. Majumdar, The Clehsch-Gordan Coefficients. Prog. Theor. Phys. 20, 798–803 (1958)

    ADS  Google Scholar 

  58. L.A. Lockwood, Canonical properties of the \(3j\) coefficient. J. Math. Phys. 17, 1671–1672 (1976)

    ADS  Google Scholar 

  59. K. Venkatesh, Symmetries of the \(3j\) coefficient. J. Math. Phys. 19, 2060–2063 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  60. K. Venkatesh, A note on the symmetries of the \(3j\) and \(6j\) coefficients, I. J. Math. Phys. 21, 622–629 (1980)

    ADS  MATH  Google Scholar 

  61. K. Venkatesh, A note on the symmetries of the \(3j\) and \(6j\) coefficients. II. J. Math. Phys. 21, 1555–1561 (1980)

    ADS  MATH  Google Scholar 

  62. W.J. Holman, III and L.C. Biedenharn, Complex Angular Momenta and the Groups SU(1,1) and SU(2), Ann. Phys. (N.Y.) 39, 1-42 (1966)

  63. A. D’Adda, R. D’Auria, G. Ponzano, Symmetries of extended \(3j\) coefficients. J. Math. Phys. 15, 1543–1553 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  64. H. Ui, Clebsch-Gordan Formulas of the SU(1,1) group. Prog. Theor. Phys. 44, 689–702 (1970)

    ADS  MathSciNet  MATH  Google Scholar 

  65. W.N. Bailey, Generalized Hypergeometric Series (Cambridge University Press, Cambridge, 1935)

    MATH  Google Scholar 

  66. A.A. Bandzaitis, A.V. Karosene, A.Y. Savukinas et al., The quantities of angular momentum theory with negative parameters representing the quantum numbers of the angular momentum. Dokl. Akad. Nauk SSSR 154, 812 (1964)

    Google Scholar 

  67. M. Huszár, Symmetries of Wigner coefficients and Thomae-Whipple functions. Acta Phys. Acad. Sci. Hung. 32, 181–185 (1972)

    Google Scholar 

  68. F.J.W. Whipple, A group of generalized hypergeometric series: relations between 120 allied series of the type \(F[a, b, c; d, e]\). Proc. London Math. Soc. 23, 104–114 (1925)

    MathSciNet  MATH  Google Scholar 

  69. M.A. Rashid, Summation-free expression for some special Clebsch-Gordan coefficients. J. Math. Phys. 27, 544–548 (1986)

    ADS  MathSciNet  Google Scholar 

  70. K. Bockasten, Mean values of powers of the radius for hydrogenic electron orbits. Phys. Rev. A 9, 1087–1089 (1974)

    ADS  Google Scholar 

  71. K. Bockasten, Erratum: Mean values of powers of the radius for hydrogenic electron orbits. Phys. Rev. A 13, 504 (1976)

    ADS  Google Scholar 

  72. T.A. Heim, J. Hinze, A.R.P. Rau, Some classes of ’nontrivial zeros’ of angular momentum coefficients. J. Phys. A: Math. Theor. 42, 175203 (2009)

    ADS  MATH  Google Scholar 

  73. V.P. Karassiov, L.A. Shelepin, Finite differences, Clebsch-Gordan coefficients, and hypergeometric functions. Theoret. and Math. Phys. 17, 991–998 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  74. V.P. Karassiov, L.A. Shelepin, Finite differences, Clebsch-Gordan coefficients, and hypergeometric functions. Teor. Mat. Fiz. 17, 67–78 (1973)

    MathSciNet  Google Scholar 

  75. D.A. Varshalovich, V.K. Khersonskii, Relationship between the radial Coulomb integrals and the angular-momentum technique. Izv. Akad. Nauk SSSR 22, 2099–2101 (1979)

    Google Scholar 

  76. L.J. Slater, Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966)

    MATH  Google Scholar 

  77. Y.L. Luke, The Special Functions and Their Approximations (Academic, New York, 1969)

    MATH  Google Scholar 

  78. D.A. Varshalovich, A.V. Karpova, Radial matrix elements and the angular momentum technique. Opt. Spectrosc. 118, 1–5 (2015)

    ADS  Google Scholar 

  79. D.A. Varshalovich, A.V. Karpova, Radial matrix elements and the angular momentum technique. Opt. Spektrosk. 118, 3–7 (2015)

    ADS  Google Scholar 

  80. B.R. Judd, Noncompact group for radial eigenfunctions. Comments At. Mol. Phys. 2, 132–135 (1970)

    Google Scholar 

  81. L. Armstrong Jr., Group Properties of Hydrogenic Radial Functions. Phys. Rev. A 3, 1546–1550 (1971)

    ADS  MathSciNet  Google Scholar 

  82. J.-C. Pain, Expectation values of relativistic powers of \(r\) in terms of Clebsch-Gordan coefficients. Opt. Spect. 128, 1105–1109 (2020)

    ADS  Google Scholar 

  83. S. Brudno, Nontrivial zeros of weight-\(1\)\(3j\) and \(6j\) coefficients. I. Linear solutions. J. Math. Phys. 26, 434–435 (1985)

    ADS  MathSciNet  Google Scholar 

  84. A. Lindner, Non-trivial zeros of the Wigner (\(3j\)) and Racah (\(6j\)) coefficients. J. Phys. A: Math. Gen. 18, 3071–3072 (1985)

    ADS  Google Scholar 

  85. A. Lindner, Drehimpulse in der Quantenmechanik (Teubner, Stuttgart, 1984)

    Google Scholar 

  86. S. Brudno, J.D. Louck, Nontrivial zeros of weight-\(1\)\(3j\) and \(6j\) coefficients: Relation to Diophantine equations of equal sums of like powers. J. Math. Phys. 26, 2092–2095 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  87. L.E. Dickson, Pell Equation: \(ax^2+bx+c\) Made Square, Ch. 12 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 341-400 (2005)

  88. E.T. Bell, Reciprocal arrays and diophantine analysis. Am. J. Math. 55, 50–66 (1933)

    MathSciNet  MATH  Google Scholar 

  89. B.L. van der Waerden, Pell’s equation in greek and hindu mathematics. Russian Math. Surveys 31, 210–225 (1976)

    ADS  MATH  Google Scholar 

  90. B.L. van der Waerden, Pell’s equation in greek and hindu mathematics. Usp. Mat. Nauk 31, 57 (1976)

    MATH  Google Scholar 

  91. L.K. Hua, Introduction to Number Theory (Springer, Berlin, 1982)

    Google Scholar 

  92. V. Boju and L. Funar, The Math Problems Notebook (Birkhäuser Basel, Birkhäuser, Boston)

  93. S.W. Golomb, Powerful numbers. Amer. Math. Monthly 77, 848–852 (1970)

    MathSciNet  MATH  Google Scholar 

  94. D.T. Walker, Consecutive integer pairs of powerful numbers and related diophantine equations. Fibonacci Quart. 14, 111–116 (1976)

    MathSciNet  MATH  Google Scholar 

  95. A.C. Dixon, Summation of a certain series. Proc. London Math. Soc. 35, 284–291 (1902)

    MathSciNet  MATH  Google Scholar 

  96. J. Raynal, On the definition and properties of generalized \(6j\) symbols. J. Math. Phys. 20, 2398–2415 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  97. G.H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17, 75–115 (1918)

    MathSciNet  MATH  Google Scholar 

  98. K.S. Rao, T.S. Santhanam, V. Rajeswari, Multiplicative Diophantine equations. J. Number Theory 42, 20–31 (1992)

    MathSciNet  MATH  Google Scholar 

  99. J. Raynal, Recurrence relations between transformation coefficients of hyperspherical harmonics and their application to Moshinsky coefficients. Nucl. Phys. A 259, 272–300 (1976)

    ADS  MathSciNet  Google Scholar 

  100. J. Raynal, J. Revai, Transformation coefficients in the hyperspherical approach to the three-body problem. Nuovo Cimento A 68, 612 (1970)

    ADS  MathSciNet  Google Scholar 

  101. https://1953.polytechnique.org/plaquette03/Raynal.html

Download references

Acknowledgements

I would like to thank Eric Bauge, Valérie Lapoux and Nicolas Alamanos for their invitation to participate to the issue on the topic “Nuclear Reaction Studies: a Tribute to Jacques Raynal”. I am also indebted to Jean-Jacques Labarthe for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Pain.

Additional information

Communicated by Nicolas Alamanos

The Whipple parameters

The Whipple parameters

Whipple [68] introduced six parameters \(r_i\) (\(i{=}0{,}1{,}2{,}3{,}4{,}5\)) such that

$$\begin{aligned} \sum _{i=0}^5r_i=0. \end{aligned}$$
(81)

Setting \(\alpha _{\ell mn}=1/2+r_{\ell }+r_m+r_n\) and \(\beta _{mn}=1+r_m-r_n\), he defined the function

$$\begin{aligned} F_p(\ell ;mn)=\frac{1}{\varGamma (\alpha _{ijk},\beta _{m\ell },\beta _{n\ell })}~_3F_2\left[ \begin{array}{clll} \alpha _{imn},\alpha _{jmn},\alpha _{kmn}\\ \beta _{m\ell },\beta _{n\ell } \end{array};1 \right] , \end{aligned}$$
(82)

where ijk are used to represent those three numbers out of the six integers 0, 1, 2, 3, 4, 5 not already represented by \(\ell \), m and n. By changing the signs of all the \(r_i\) parameters and using the constraint (81), Whipple defined another function [68]:

$$\begin{aligned} F_n(\ell ;mn)=\frac{1}{\varGamma \left( \alpha _{\ell mn},\beta _{\ell m}, \gamma _{\ell n}\right) }. \end{aligned}$$
(83)

By permutation of the suffixes \(\ell \), m, n over the six integers 0, 1, 2, 3, 4, 5, sixty \(F_p\) functions and sixty \(F_n\) functions can be written down. If there is no negative integer in the numerator parameters, these series converge only if the real parts of \(\alpha _{ijk}\) in (82) and \(\alpha _{\ell mn}\) in (83) are positive.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pain, JC. Some properties of Wigner 3j coefficients: non-trivial zeros and connections to hypergeometric functions. Eur. Phys. J. A 56, 296 (2020). https://doi.org/10.1140/epja/s10050-020-00303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00303-9

Navigation