Skip to main content
Log in

Delta baryons in neutron-star matter under strong magnetic fields

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we study magnetic field effects on neutron star matter containing the baryon octet and additional heavier spin 3/2 baryons (the \(\varDelta \)’s). We make use of two different relativistic hadronic models that contain an additional vector-isovector self interaction for the mesons: one version of a relativistic mean field (RMF) model and the chiral mean field (CMF) model. We find that both the additional interaction and a strong magnetic field enhance the \(\varDelta \) baryon population in dense matter, while decreasing the relative density of hyperons. At the same time that the vector-isovector meson interaction modifies neutron-star masses very little (\(<0.1~\mathrm M_{\mathrm{Sun}}\)), it decreases their radii considerably, allowing both models to be in better agreement with observations. Together, these features indicate that magnetic neutron stars are likely to contain \(\varDelta \) baryons in their interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Some of the data included in the manuscript is available in the CompOSE website: https://compose.obspm.fr.]

Notes

  1. http://compose.obspm.fr.

References

  1. N.K. Glendenning, The hyperon composition of neutron stars. Phys. Lett. B 114, 392–396 (1982)

    Article  ADS  Google Scholar 

  2. J.C.T. Oliveira, H. Rodrigues, S.B. Duarte, The effect of the delta-rich hadronic stellar matter in the maximum neutron star mass using the nonlinear Walecka and Zimanyi-Moszkowski models. J. Phys. Conf. Ser. 1291(1), 012038 (2019)

    Article  Google Scholar 

  3. G. Malfatti, M.G. Orsaria, I.F. Ranea-Sandoval, G.A. Contrera, F. Weber, Delta baryons and diquark formation in the cores of neutron stars. Phys. Rev. D 102(6), 063008 (2020)

    Article  ADS  Google Scholar 

  4. H.S. Sahoo, R. Mishra, P.K. Panda, Delta matter in neutron stars in a relativistic quark model. JPS Conf. Proc. 32, 010054 (2020)

    Google Scholar 

  5. T.F. Motta, A.W. Thomas, P.A.M. Guichon, Do delta baryons play a role in neutron stars? Phys. Lett. B 802, 135266 (2020)

    Article  MathSciNet  Google Scholar 

  6. J.J. Li, A. Sedrakian, F. Weber, Rapidly rotating \(\Delta \)-resonance-admixed hypernuclear compact stars. Phys. Lett. B 810, 135812 (2020)

    Article  Google Scholar 

  7. A.R. Raduta, M. Oertel, A. Sedrakian, Proto-neutron stars with heavy baryons and universal relations. Mon. Not. R. Astron. Soc. 499(1), 914–931 (2020)

    Article  ADS  Google Scholar 

  8. P. Ribes, A. Ramos, L. Tolos, C. Gonzalez-Boquera, M. Centelles, Interplay between \(\Delta \) particles and hyperons in neutron stars. Astrophys. J. 883, 168 (2019)

    Article  ADS  Google Scholar 

  9. T.T. Sun, S.S. Zhang, Q.L. Zhang, C.J. Xia, Strangeness and \(\Delta \) resonance in compact stars with relativistic-mean-field models. Phys. Rev. D 99(2), 023004 (2019)

    Article  ADS  Google Scholar 

  10. A.R. Raduta, \(\Delta \)-admixed neutron stars: spinodal instabilities and dUrca processes. Phys. Lett. B 814, 136070 (2021)

    Article  Google Scholar 

  11. A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Early appearance of \(\Delta \) isobars in neutron stars. Phys. Rev. C 90(6), 065809 (2014)

    Article  ADS  Google Scholar 

  12. E.E. Kolomeitsev, K.A. Maslov, D.N. Voskresensky, Delta isobars in relativistic mean-field models with \(\sigma \) -scaled hadron masses and couplings. Nucl. Phys. A 961, 106–141 (2017)

    Article  ADS  Google Scholar 

  13. M.D. Cozma, M.B. Tsang, In-medium \(\Delta (1232)\) potential, pion production in heavy-ion collisions and the symmetry energy. arXiv:2101.08679 (2021)

  14. M.G. de Paoli, D.P. Menezes, L.B. Castro, C.C. Barros Jr., The Rarita-Schwinger particles under de influence of strong magnetic fields. J. Phys. G 40, 055007 (2013)

    Article  ADS  Google Scholar 

  15. V.B. Thapa, M. Sinha, J.J. Li, A. Sedrakian, Equation of state of strongly magnetized matter with hyperons and \(\Delta \)-resonances. Particles 3(4), 660–675 (2020)

    Article  Google Scholar 

  16. D. Chatterjee, J. Novak, M. Oertel, Magnetic field distribution in magnetars. Phys. Rev. C 99(5), 055811 (2019)

    Article  ADS  Google Scholar 

  17. C.J. Horowitz, J. Piekarewicz, Constraining URCA cooling of neutron stars from the neutron radius of Pb-208. Phys. Rev. C 66, 055803 (2002)

    Article  ADS  Google Scholar 

  18. S. Schramm, Nuclear and neutron star radii. Phys. Lett. B 560, 164–170 (2003)

    Article  ADS  Google Scholar 

  19. D. Bizarro, A. Rabhi, C. Providência, Effect of the symmetry energy and hyperon interaction on neutron stars. arXiv:1502.04952 (2015)

  20. H. Pais, C. Providência, Vlasov formalism for extended relativistic mean field models: the crust-core transition and the stellar matter equation of state. Phys. Rev. C 94(1), 015808 (2016)

    Article  ADS  Google Scholar 

  21. V. Dexheimer, R. Negreiros, S. Schramm, Reconciling nuclear and astrophysical constraints. Phys. Rev. C 92(1), 012801 (2015)

    Article  ADS  Google Scholar 

  22. N. Hornick, L. Tolos, A. Zacchi, J.-E. Christian, J. Schaffner-Bielich, Relativistic parameterizations of neutron matter and implications for neutron stars. Phys. Rev. C 98(6), 065804 (2018)

    Article  ADS  Google Scholar 

  23. V. Dexheimer, R.O. Gomes, S. Schramm, H. Pais, What do we learn about vector interactions from GW170817? J. Phys. G 46(3), 034002 (2019)

    Article  ADS  Google Scholar 

  24. M. Strickland, V. Dexheimer, D.P. Menezes, Bulk properties of a fermi gas in a magnetic field. Phys. Rev. D 86, 125032 (2012)

    Article  ADS  Google Scholar 

  25. R.H. Casali, L.B. Castro, D.P. Menezes, Hadronic and hybrid stars subject to density-dependent magnetic fields. Phys. Rev. C 89, 015805 (2014)

    Article  ADS  Google Scholar 

  26. A. Broderick, M. Prakash, J.M. Lattimer, The equation of state of neutron star matter in strong magnetic fields. Astrophys. J. 537, 351 (2000)

    Article  ADS  Google Scholar 

  27. S.S. Avancini, D.P. Menezes, C. Providência, Finite temperature quark matter under strong magnetic fields. Phys. Rev. C 83, 065805 (2011)

    Article  ADS  Google Scholar 

  28. N.K. Glendenning, S.A. Moszkowski, Reconciliation of neutron-star masses and binding of the \(\Lambda \) in hypernuclei. Phys. Rev. Lett. 67, 2414–2417 (1991)

    Article  ADS  Google Scholar 

  29. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providência, S. Typel, J.R. Stone, Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90(5), 055203 (2014)

    Article  ADS  Google Scholar 

  30. O. Lourenço, M. Dutra, C.H. Lenzi, C.V. Flores, D.P. Menezes, Consistent relativistic mean-field models constrained by gw170817. Phys. Rev. C 99(4), 045202 (2019)

    Article  ADS  Google Scholar 

  31. B.T. Reed, F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, Implications of PREX-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett. 126, 172503 (2021)

    Article  ADS  Google Scholar 

  32. L.-W. Chen, C.M. Ko, B.-A. Li, J. Xu, Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 82(2), 024321 (2010)

    Article  ADS  Google Scholar 

  33. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Equation of state and neutron star properties constrained by nuclear physics and observation. Astrophys. J. 773, 11 (2013)

    Article  ADS  Google Scholar 

  34. G. Malfatti, M.G. Orsaria, G.A. Contrera, F. Weber, I.F. Ranea-Sandoval, Hot quark matter and (proto-) neutron stars. Phys. Rev. C 100(1), 015803 (2019)

    Article  ADS  Google Scholar 

  35. L.L. Lopes, D.P. Menezes, Hypernuclear matter in a complete SU(3) symmetry group. Phys. Rev. C 89(2), 25805 (2014)

    Article  ADS  Google Scholar 

  36. J.C.T. De Oliveira, S.B. Duarte, H. Rodrigues, M. Chiapparini, M. Kyotoku, Effects of \(\delta \)-baryon interaction strength on neutron stars properties. Int. J. Mod. Phys. D 16(02n03), 175–183 (2007)

    Article  ADS  MATH  Google Scholar 

  37. W.J. de Haas, P.M. van Alphen, Magnetic oscillations in metals. Proc. Am. Acad. Arts Sci. 33, 1106 (1936)

    MATH  Google Scholar 

  38. M. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Rotating neutron star models with magnetic field. Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  39. C.Y. Cardall, M. Prakash, J.M. Lattimer, Effects of strong magnetic fields on neutron star structure. Astrophys. J. 554, 322–339 (2001)

    Article  ADS  Google Scholar 

  40. V. Dexheimer, B. Franzon, R.O. Gomes, R.L.S. Farias, S.S. Avancini, S. Schramm, What is the magnetic field distribution for the equation of state of magnetized neutron stars? Phys. Lett. B 773, 487–491 (2017)

    Article  ADS  Google Scholar 

  41. V. Dexheimer, S. Schramm, Proto-neutron and neutron stars in a chiral SU(3) model. Astrophys. J. 683, 943–948 (2008)

    Article  ADS  Google Scholar 

  42. T. Schürhoff, S. Schramm, V. Dexheimer, Neutron stars with small radii - the role of delta resonances. Astrophys. J. Lett. 724, L74–L77 (2010)

    Article  ADS  Google Scholar 

  43. V. Dexheimer, R. Negreiros, S. Schramm, Hybrid stars in a strong magnetic field. Eur. Phys. J. A 48, 189 (2012)

    Article  ADS  Google Scholar 

  44. B. Franzon, V. Dexheimer, S. Schramm, A self-consistent study of magnetic field effects on hybrid stars. Mon. Not. R. Astron. Soc. 456(3), 2937–2945 (2016)

    Article  ADS  Google Scholar 

  45. V. Dexheimer, R.O. Gomes, T. Klähn, S. Han, M. Salinas, GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C 103(2), 025808 (2021)

    Article  ADS  Google Scholar 

  46. R.C. Tolman, Static solutions of Einsteins field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939)

    Article  ADS  MATH  Google Scholar 

  47. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939)

    Article  ADS  MATH  Google Scholar 

  48. G. Baym, C. Pethick, P. Sutherland, The ground state of matter at high densities: equation of state and stellar models. Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  49. J. Frieben, L. Rezzolla, Equilibrium models of relativistic stars with a toroidal magnetic field. Mon. Not. R. Astron. Soc. 427, 3406–3426 (2012)

    Article  ADS  Google Scholar 

  50. A.G. Pili, N. Bucciantini, L. Del Zanna, Axisymmetric equilibrium models for magnetized neutron stars in general relativity under the conformally flat condition. Mon. Not. R. Astron. Soc. 439, 3541–3563 (2014)

    Article  ADS  Google Scholar 

  51. N. Chamel, P. Haensel, J.L. Zdunik, A.F. Fantina, On the maximum mass of neutron stars. Int. J. Mod. Phys. E 22, 1330018 (2013)

  52. M.C. Miller et al., PSR J0030+0451 mass and radius from \(NICER\) data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887(1), L24 (2019)

  53. T.E. Riley et al., A \(NICER\) view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887(1), L21 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  54. B.P. Abbott, R. Abbott et al., Properties of the binary neutron star merger gw170817. Phys. Rev. X 9, 011001 (2019)

    Google Scholar 

  55. D. Chatterjee, T. Elghozi, J. Novak, M. Oertel, Consistent neutron star models with magnetic field dependent equations of state. Mon. Not. R. Astron. Soc. 447, 3785 (2015)

    Article  ADS  Google Scholar 

  56. B. Biswas, S. Bose, Tidal deformability of an anisotropic compact star: implications of GW170817. Phys. Rev. D 99(10), 104002 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. A.E. Broderick, M. Prakash, J.M. Lattimer, Effects of strong magnetic fields in strange baryonic matter. Phys. Lett. B 531, 167–174 (2002)

    Article  ADS  Google Scholar 

  58. P.A. Zyla et al., Review of particle physics. PTEP 2020(8), 083C01 (2020)

    Google Scholar 

Download references

Acknowledgements

We thank Madappa Prakash for very useful discussions. Support for this research comes from the National Science Foundation under grant PHY-1748621 and PHAROS (COST Action CA16214). This work is a part of the project INCT-FNA Proc. No. 464898/2014-5. D.P.M. and K.D.M. are partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) respectively under grant 301155.2017-8 and with a doctorate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Dexheimer.

Additional information

Communicated by Carsten Urbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dexheimer, V., Marquez, K.D. & Menezes, D.P. Delta baryons in neutron-star matter under strong magnetic fields. Eur. Phys. J. A 57, 216 (2021). https://doi.org/10.1140/epja/s10050-021-00532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00532-6

Navigation