Skip to main content
Log in

Anisotropic effects in surface acoustic wave propagation from a point source in a crystal

  • OriginalPaper
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Strong anisotropic effects in the propagation of surface acoustic waves (SAWs) from a point-like source are studied experimentally and theoretically. Nanosecond SAW pulses are generated by focused laser pulses and detected with a cw probe laser beam at a large distance from the source compared to the SAW wavelength, which allows us to resolve fine intricate features in SAW wavefronts. In our theoretical model, we represent the laser excitation by a localized impulsive force acting on the sample surface and calculate the far-field surface response of an elastically anisotropic solid to such a force. The model simulates the measured SAW waveforms very well and accounts for all experimentally observed features. Using the data obtained for the (111) and (001) surfaces of GaAs, we describe a variety of effects encountered in the SAW propagation from a point source in crystals. The most interesting phenomenon is the existence of cuspidal structures in SAW wavefronts resulting in multiple SAW arrivals for certain ranges of the observation angle. Cuspidal edges correspond to the “phonon focusing” directions yielding sharp peaks in the SAW amplitude. A finite SAW wavelength results in “internal diffraction” whereby the SAW wavefront spreads beyond the group velocity cusps. Degeneration of a SAW into a transverse bulk wave is another strong effect influencing the anisotropy of the SAW amplitude and making whole sections of the SAW wavefront including some phonon focusing directions unobservable in the experiment. The propagation of a leaky SAW mode (pseudo-SAW) is affected by a specific additional effect i.e. anisotropic attenuation. We also demonstrate that many of the discussed features are reproduced in “powder patterns”, a simple technique developed by us earlier for visualization of SAW amplitude anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Auld, Acoustic Fields and Waves in solids (Wiley, N.Y., 1973)

  2. T.L. Szabo, A.J. Slobodnik, Jr., IEEE Trans. Sonics Ultrason. SU-20, 240 (1973)

    Google Scholar 

  3. J.P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge, 1998)

  4. B. Taylor, H.J. Maris, C. Elbaum, Phys. Rev. Lett. 23, 416 (1969)

    Article  Google Scholar 

  5. G.A. Northrop, J.P. Wolfe, in Nonequilibrium Phonon Dynamics, edited by W.E. Bron (Plenum, NY, 1985)

  6. A.G. Every, W. Sachse, K.Y. Kim, M.O. Thompson, Phys. Rev. Lett. 65, 1446 (1990)

    Article  Google Scholar 

  7. K.Y. Kim, K.C. Bretz, A.G. Every, W. Sachse, J. Appl. Phys. 79, 1857 (1996)

    Article  Google Scholar 

  8. M.R. Hauser, R.L. Weaver, J.P. Wolfe, Phys. Rev. Lett. 68, 2604 (1992)

    Article  Google Scholar 

  9. K.Y. Kim, W. Sachse, A.G. Every, J. Acoust. Soc. Am. 93, 1393 (1993)

    Google Scholar 

  10. K.-U. Wurz, J. Wesner, K. Hillmann, W. Grill, Z. Phys. B 97, 487 (1995)

    Google Scholar 

  11. V.T. Buchwald, Q.J. Mech. Appl. Math. 14, 293 (1961)

    MATH  Google Scholar 

  12. S. Tamura, K. Honjo, Jap. J. Appl. Phys. 20, Suppl. 20-3, 17 (1981)

  13. R.E. Camley, A.A. Maradudin, Phys. Rev. B27, 1959 (1983)

  14. Al.A. Kolomenskii, A.A. Maznev, JETP Lett. 53, 423 (1991)

    Google Scholar 

  15. Al.A. Kolomenskii, A.A. Maznev, Phys. Rev. B48, 14502 (1993)

  16. A.A. Maznev, A.G. Every, Solid State Commun. 97, 679 (1996)

    Google Scholar 

  17. A.A. Maznev, Al.A. Kolomenskii, P. Hess, Phys. Rev. Lett. 75, 3332 (1995)

    Article  Google Scholar 

  18. T.-T. Wu, J.-F. Chai, Ultrasonics 32, 21 (1994)

    Article  Google Scholar 

  19. R.E. Vines, S. Tamura, J.P. Wolfe, Phys. Rev. Lett. 74, 2729 (1995)

    Article  Google Scholar 

  20. Y. Sugawara, O.B. Wright, O. Matsuda, M. Takigahira, Y. Tanaka, S. Tamura, V.E. Gusev, Phys. Rev. Lett. 88, 185504 (2002)

    Article  Google Scholar 

  21. A detailed discussion of laser excitation and detection of linear and nonlinear SAW pulses can be found in A.M. Lomonosov, P. Hess, A.P. Mayer, in Modern Acoustical Techniques for the Measurement of Mechanical Properties, edited by M. Levy, H.E. Bass, R. Stern (Academic Press, San Diego, 2001), pp. 65-134

  22. A. Lomonosov, P. Hess, Phys. Rev. Lett. 83, 3876 (1999)

    Article  Google Scholar 

  23. G.W. Farnell, in Physical Acoustics, edited by W.P. Mason, R.N. Thurston, Vol. 6 (Academic Press, NY, 1970)

  24. H.J. Maris, J. Acoust. Soc. Am. 50, 812 (1971)

    Google Scholar 

  25. C.Y. Wang, J.D. Achenbach, Wave Motion 24, 227 (1996)

    MathSciNet  MATH  Google Scholar 

  26. A.G. Every, K.Y. Kim, A.A. Maznev, J. Acoust. Soc. Am. 102, 1346 (1997)

    Article  Google Scholar 

  27. A.G. Every, A.A. Maznev, G.A.D. Briggs, Phys. Rev. Lett. 79, 2478 (1997)

    Article  Google Scholar 

  28. Y. Tanaka, M. Takigahiro, S. Tamura, Phys. Rev. B 66, 075409 (2002)

    Google Scholar 

  29. S. Tamura, M. Yagi, Phys. Rev. B49, 17378 (1994)

  30. A.A. Maznev, A.G. Every, Int. J. Engng. Sci. 35, 321 (1997)

    MATH  Google Scholar 

  31. H. Coufal, K. Meyer, R.K. Grygier, P. Hess, A. Neubrand, J. Acoust. Soc. Am. 95, 1158 (1994)

    Google Scholar 

  32. Landolt-Börnstein, New Series, Group III, Vol. 29, edited by D.F. Nelson (Springer, Berlin, 1992)

  33. Akusticheskie Krystally (Acoustic Crystals), Handbook, edited by M.P. Shaskol’skaya (Nauka, Moscow, 1982)

  34. Depending on elastic anisotropy, pseudo-SAW wavefront on (001) cubic crystal surface may also contain cusps, see A.A. Maznev, A.G. Every, Acta Acustica 1, 137 (1994)

    Google Scholar 

  35. G.I. Stegeman, J. Appl. Phys. 47, 1712 (1976)

    Article  Google Scholar 

  36. Al.A. Kolomenskii, A.A. Maznev, J. Appl. Phys. 77, 6052 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maznev.

Additional information

Received: 17 June 2003, Published online: 15 October 2003

PACS:

43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound - 68.35.Gy Mechanical properties; surface strains - 62.65.+k Acoustical properties of solids

A.M. Lomonosov: On leave from the General Physics Institute, 117942 Moscow, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maznev, A.A., Lomonosov, A.M., Hess, P. et al. Anisotropic effects in surface acoustic wave propagation from a point source in a crystal. Eur. Phys. J. B 35, 429–439 (2003). https://doi.org/10.1140/epjb/e2003-00295-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00295-y

Keywords

Navigation