Skip to main content
Log in

Melting of ice in porous glass: why water and solvents confined in small pores do not crystallize?

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The melting of ice in porous glass having different distribution of pores sizes is analyzed in details. One shows that confined water crystallizes only partially and that an interface layer, between the ice crystallites and the surface of the pore, remains liquid. Properties of this non crystalline interface at low temperature is studied by NMR and DSC. Both methods lead to an interface thickness h of the order of 0.5 nm, this explains why water do not crystallize when the dimension of confinement is less than a critical length \(d^{*}\sim 1\) nm. The variation of the melting enthalpy per gram of total amount of water with the confinement length is explained taking into account two effects: a) the presence of this layer of water at the interface and b) the linear variation of the melting enthalpy \(\Delta H_{m}\) with the melting temperature T m . From the data of the literature one draws the same conclusions concerning other solvents in similar porous materials. Also one points out the important role of the glass temperature T g in preventing the crystallization of the liquids confined in small pores and/or between the crystallites and the surface of the pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a) M. Brun, Ph.D. thesis, University of Lyon, France (1973); b) M. Brun, A. Lallemand, J.F. Quinson, C. Eyraud, Thermochim. Acta 21, 59 (1977)

    Article  Google Scholar 

  2. C.L. Jackson, G.B. McKenna, J. Chem. Phys. 93, 9002 (1990)

    Article  Google Scholar 

  3. G. Liu, Y. Li, J. Jonas, J. Chem. Phys. 95(9), 6892 (1991)

    Article  Google Scholar 

  4. R. Mu, V.M. Malhota, Phys. Rev. B 44, 4296 (1991)

    Article  Google Scholar 

  5. Y.P. Handa, M. Zakrzewski, C. Fairbridge, J. Phys. Chem. 96, 8594 (1992)

    Google Scholar 

  6. K. Overloop, L. Van Gerven, J. Mag. Resonance A 104, 179 (1993)

    Article  Google Scholar 

  7. E. Moltz, A.R. Wong, M.H. Chan, J.R. Beamish, Phys. Rev. B 48, 5741 (1993)

    Article  Google Scholar 

  8. K.M. Unruh, T.E. Huber, C.A. Huber, Phys. Rev. B 48, 9021 (1993)

    Article  Google Scholar 

  9. B.F. Borisov, E.V. Charnaya, Y.A. Kumserov, A.K. Radzhabov, A.V. Shelyapin, Solid State Commun. 92, 531 (1994)

    Article  Google Scholar 

  10. Y.A. Kumzerov, A. Naberezmov, S.B. Vakhrushev, B.N. Sovenko, Phys. Rev. B 52, 4772 (1995)

    Article  Google Scholar 

  11. B.F. Borisov, E.V. Charnaya, P.G. Plotnikov, W.D. Hoffmann, D. Michel, Y. Kumzerov, C. Tien, C.S. Wur, Phys. Rev. B 58, 5329 (1998)

    Article  Google Scholar 

  12. R. Neffati, Ph.D. thesis, Université Paris-Sud, Orsay, France (1999)

  13. J. Borel, Surf. Sci. 106, 1 (1981)

    Article  Google Scholar 

  14. S. Veprek, Z. Iybal, F.A. Sarott, Phil. Mag. B 45, 137 (1982)

    Google Scholar 

  15. D. Turnbull, Physics of Non Crystalline Solids (Edit. Prins, North Holland, Amsterdam, 1960)

  16. L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiok, Rep. Prog. Phys. 62, 1573 (1999)

    Google Scholar 

  17. W. Kauzmann, Chem. Rev. 57, 2680 (1948)

    Google Scholar 

  18. J.C. Li, D.K. Ross, J. Phys.: Condens. Matter 6, 351 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.C. Li, D.K. Ross, R.K. Heeman, Phys. Rev. B 48, 6716 (1993)

    Article  Google Scholar 

  20. U. Even, K. Rademann, J. Jortner, N. Manor, R. Reisfeld, Phys. Rev. Lett. 52, 2164 (1984)

    Article  Google Scholar 

  21. M. Arndt, F. Kremer, Mater. Res. Soc. Symp. Proc. 366, 259 (1995)

    Google Scholar 

  22. P. Pissis, J. Laudat, A. Kyritsis, J. Non-Cryst. Solids 171, 201 (1994)

    Article  Google Scholar 

  23. P. Pissis, D. Daoukaki-Diamanti, L. Apekis, J. Phys.: Condens. Matter 6, L325 (1994)

  24. P. Pissis, A. Kyritsis, D. Daoukaki, G. Barut, R. Pelster, G. Nimitz, J. Phys.: Condens. Matter 10, 6205 (1998)

    Article  Google Scholar 

  25. C. Streck, Y. Mel’Nichenko, R. Richert, Phys. Rev. B 53, 5341 (1996)

    Article  Google Scholar 

  26. W. Gorbatschow, M. Arndt, R. Stannarius, F. Kremer, Europhys. Lett. 35, 719 (1996)

    Article  Google Scholar 

  27. P.T. Tanev, T.J. Pinnavaia, Science 271, 1267 (1996)

    CAS  Google Scholar 

  28. Y. Bennadja, P. Beaunier, D. Margolese, A. Davidson, Microporous Mesoporous Mater. 44-45, 147 (2001)

    Google Scholar 

  29. M. Imperor-Clerc, P. Davidson, A. Davidson, J. Am. Chem. Soc. 122, 11925 (2000)

    Article  Google Scholar 

  30. R.K. Harris, Nuclear Magnetic Resonance (Eds. Pitman, London, 1983)

  31. E.W. Lang, H.D. Lüdemann, Angew. Chem. Int. Ed. Engl. 21, 315 (1982)

    Article  Google Scholar 

  32. Water a Comprehensive Treatise, Vol. 7, edited by F. Franks (Plenum Press, N. Y. 1981)

  33. R.J. Speedy C.A. Angel, J. Chem. Phys. 65, 851 (1976)

    Article  Google Scholar 

  34. R.I. Ito, C.T. Moynihan, C.A. Angel, Nature 398, 492 (1999)

    Article  Google Scholar 

  35. E. Tombari, C. Ferrari, G. Salvetti, Chem. Phys. Lett. 300, 749 (1999)

    Article  Google Scholar 

  36. D. Hentschel, D.H. Sillescu, H.W. Spiess, Macromolecules 14, 1605 (1981)

    Google Scholar 

  37. A.D. Meltzer, H.W. Spiess, Makrom. Chem. Rapid Comm. 12, 261 (1991)

    Article  Google Scholar 

  38. J. Rault, C. Macé, P. Judeinstein, J. Courtieu, J. Macromol. Sci. Phys. B 35, 115 (1996)

    Google Scholar 

  39. a) P. Gallo, M. Rovere, E. Spohr, J. Chem. Phys. 113, 11324 (2000); b) P. Gallo, M. Rovere, E. Spohr, Phys. Rev. Lett. 85, 4317 (2000)

    Article  Google Scholar 

  40. L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1997)

    Google Scholar 

  41. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997)

    Article  Google Scholar 

  42. a) A. Schonhals, H. Goering, Ch. Schick, J. Non-crystalline Sol. 305, 140 (2002); b) A. Schonhals, H. Goering, K.W. Brzezinka, Ch. Schick, J. Condens.: Matter 15, S1139 (2003)

    Article  Google Scholar 

  43. R. Richert, M. Yang, J. Phys.: Condens. Matter 15, S1041 (2002)

  44. J.C. Hindman, A.J Zilen, A. Svirmickas, M. Wood, J. Chem. Phys. 54, 621 (1971)

    Google Scholar 

  45. J.C. Hindman, J. Chem. Phys. 60, 4488 (1974)

    Google Scholar 

  46. J.C. Hindman, A. Svirmickas, J. Chem. Phys. 77, 2487 (1973)

    Google Scholar 

  47. R. Torre, personnal communication

  48. W. Hansen, C. Simon, R. Haugsrud, H. Raeder, R. Bredesen, J. Phys. Chem. B 106, 12396 (2002)

    Article  Google Scholar 

  49. R. Zimmermann, W.E. Brittin, J. Phys. Chem. 61, 1328 (1957)

    Google Scholar 

  50. P. Korb, M. Winterhalter, H.M. McConnell, J. Chem. Phys. 95, 6892 (1991)

    Article  Google Scholar 

  51. F. D’Orazio, J.C. Tarczon, W.P. Halperin, K. Eguchi, T. Mizusaki, J. Appl. Phys. 65, 742 (1989)

    Article  Google Scholar 

  52. R. Neffati, L. Apekis, J. Rault, J. Therm. Analysis 54, 741 (1998)

    Article  Google Scholar 

  53. R. Neffati, J. Rault, Eur. Phys. J. B 21, 205 (2001)

    Article  Google Scholar 

  54. W. Wautelet, J. Phys. D Appl. Phys. 343, 24 (1991)

    Google Scholar 

  55. P.R. Couchman, W.A. Jesser, Nature 269, 481 (1977)

    Google Scholar 

  56. J. Rault, J. Non-Cryst. Solids 260, 164 (1999) and J. Non-Cryst. Solids 271, 177 (2000)

    Article  Google Scholar 

  57. J. Rault, T. N’Guyen, R. Greff, Z. Ping, J. Neel, Polymer 36, 1655 (1995)

    Article  Google Scholar 

  58. J. Rault, Makromol. Chem., Macromol. Symp. 100, 31 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rault.

Additional information

Received: 20 September 2003, Published online: 30 January 2004

PACS:

64.70.Dv Solid-liquid transitions - 64.70.Pf Glass transitions - 81.05.Rm Porous materials; granular materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rault, J., Neffati, R. & Judeinstein, P. Melting of ice in porous glass: why water and solvents confined in small pores do not crystallize?. Eur. Phys. J. B 36, 627–637 (2003). https://doi.org/10.1140/epjb/e2004-00017-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00017-1

Keywords

Navigation