Skip to main content
Log in

Clustering and information in correlation based financial networks

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Networks of companies can be constructed by using return correlations. A crucial issue in this approach is to select the relevant correlations from the correlation matrix. In order to study this problem, we start from an empty graph with no edges where the vertices correspond to stocks. Then, one by one, we insert edges between the vertices according to the rank of their correlation strength, resulting in a network called asset graph. We study its properties, such as topologically different growth types, number and size of clusters and clustering coefficient. These properties, calculated from empirical data, are compared against those of a random graph. The growth of the graph can be classified according to the topological role of the newly inserted edge. We find that the type of growth which is responsible for creating cycles in the graph sets in much earlier for the empirical asset graph than for the random graph, and thus reflects the high degree of networking present in the market. We also find the number of clusters in the random graph to be one order of magnitude higher than for the asset graph. At a critical threshold, the random graph undergoes a radical change in topology related to percolation transition and forms a single giant cluster, a phenomenon which is not observed for the asset graph. Differences in mean clustering coefficient lead us to conclude that most information is contained roughly within 10% of the edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The economy as an evolving complex system II, edited by W.B. Arthur, S.N. Durlauf, D.A. Lane (Addison-Wesley, Reading, Massachusetts, 1997)

  2. H.M. Markowitz, J. Finance 7, 77 (1952)

    Google Scholar 

  3. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002); S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford UP, 2003)

    Article  ADS  Google Scholar 

  4. G. Caldarelli, S. Battiston, D. Garlaschelli, M. Catanzaro, in Complex Networks, edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Springer, 2004)

  5. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, A. Kanto, Phys. Scr. T 106, 48 (2003)

    Article  ADS  Google Scholar 

  6. R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)

    Article  ADS  Google Scholar 

  7. L. Kullmann, J. Kertész, R. Mantegna, Physica A 287, 412 (2000)

    Article  ADS  Google Scholar 

  8. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, Eur. Phys. J. B 30, 285 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, A. Kanto, Phys. Rev. E 68, 056110 (2003)

    Article  ADS  Google Scholar 

  10. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, Physica A 324, 247 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Bonanno, F. Lillo, R.N. Mantegna, Quantitative Finance 1, 96 (2001)

    Article  Google Scholar 

  12. G. Bonanno, N. Vandewalle, R.N. Mantegna, Phys. Rev. E 62, R7615 (2000)

  13. L. Kullmann, J. Kertész, K. Kaski, Phys. Rev. E 66, 026125 (2002)

    Article  ADS  Google Scholar 

  14. M. Mehta, Random Matrices (Academic Press, New York, 1995)

  15. L. Laloux et al. , Phys. Rev. Lett. 83, 1467 (1999)

    Article  ADS  Google Scholar 

  16. V. Plerou et al. , Phys. Rev. Lett. 83, 1471 (1999)

    Article  ADS  Google Scholar 

  17. S. Pafka, I. Kondor, Physica A 319, 487 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. I.T. Joliffe, Principal Component Analysis (2002, Heidelberg, Springer); R. Brummelhuis, A. Cordoba, M. Quintanilla, L. Seco, Mathematical Finance 12, 23 (2002)

    Article  MathSciNet  Google Scholar 

  19. A. Hyvärinen, Neural Computing Surveys 2, 94 (1999); A.D. Back, A. Weigend, Int. J. Neural System 8, 473 (1997)

    Google Scholar 

  20. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, 2001)

  21. Forbes at http://www.forbes.com/, referenced in March-April, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kertész.

Additional information

Received: 11 December 2003, Published online: 14 May 2004

PACS:

89.65.-s Social and economic systems - 89.75.-k Complex systems - 89.90. + n Other topics in areas of applied and interdisciplinary physics (restricted to new topics in section 89)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onnela, JP., Kaski, K. & Kertész, J. Clustering and information in correlation based financial networks. Eur. Phys. J. B 38, 353–362 (2004). https://doi.org/10.1140/epjb/e2004-00128-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00128-7

Keywords

Navigation