Skip to main content
Log in

Modularity-maximizing graph communities via mathematical programming

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In many networks, it is of great interest to identify communities, unusually densely knit groups of individuals. Such communities often shed light on the function of the networks or underlying properties of the individuals. Recently, Newman suggested modularity as a natural measure of the quality of a network partitioning into communities. Since then, various algorithms have been proposed for (approximately) maximizing the modularity of the partitioning determined. In this paper, we introduce the technique of rounding mathematical programs to the problem of modularity maximization, presenting two novel algorithms. More specifically, the algorithms round solutions to linear and vector programs. Importantly, the linear programing algorithm comes with an a posteriori approximation guarantee: by comparing the solution quality to the fractional solution of the linear program, a bound on the available “room for improvement” can be obtained. The vector programming algorithm provides a similar bound for the best partition into two communities. We evaluate both algorithms using experiments on several standard test cases for network partitioning algorithms, and find that they perform comparably or better than past algorithms, while being more efficient than exhaustive techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Newman, A. Barabási, D. Watts, The Structure and Dynamics of Networks (Princeton University Press, 2006)

  • J. Scott, Social Network Analysis: A Handbook, 2nd edn. (Sage Publications, 2000)

  • S. Wasserman, K. Faust, Social Network Analysis (Cambridge University Press, 1994)

  • J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, The web as a graph: Measurements, models and methods, in International Conference on Combinatorics and Computing, 1999

  • R. Guimerà, L. Amaral, Nature 433, 895 (2005)

    Google Scholar 

  • M. Newman, Phys. Rev. E 74, 036104 (2006)

    Google Scholar 

  • G. Flake, S. Lawrence, C.L. Giles, F. Coetzee, IEEE Computer 35, 66 (2002)

    Google Scholar 

  • M. Girvan, M. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)

    Google Scholar 

  • M. Newman, Eur. Phys. J. B 38, 321 (2004)

    Google Scholar 

  • J. Duch, A. Arenas, Phys. Rev. E 72, 027104 (2005)

    Google Scholar 

  • G. Flake, R. Tarjan, K. Tsioutsiouliklis, Graph clustering techniques based on minimum cut trees, Technical Report 2002-06 (NEC, Princeton, 2002)

  • A. Hayrapetyan, D. Kempe, M. Pál, Z. Svitkina, Unbalanced graph cuts, in Proc. 13th European Symp. on Algorithms, 2005, pp. 191–202

  • M. Charikar, Greedy approximation algorithms for finding dense components in graphs, in Proc. 3rd Intl. Workshop on Approximation Algorithms for Combinatorial Optimization Problems, 2000

  • M. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    Google Scholar 

  • M. Newman, Phys. Rev. E 69, 066133 (2004)

    Google Scholar 

  • A. Clauset, M. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004)

    Google Scholar 

  • A. Clauset, Phys. Rev. E 72, 026132 (2005)

    Google Scholar 

  • M. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006)

    Google Scholar 

  • L. Danon, J. Duch, A. Diaz-Guilera, A. Arenas, J. Stat. Mech. P09008 (2005)

  • S. Fortunato, M. Barthélemy, Proc. Natl. Acad. Sci. USA 104, 36 (2007)

    Google Scholar 

  • J. Kleinberg, An impossibility theorem for clustering, in Proc. Advances in Neural Information Processing Systems (NIPS) (2002)

  • U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, D. Wagner, IEEE Trans. Know, Data Eng. 20, 172 (2008)

    Google Scholar 

  • M. Charikar, V. Guruswami, A. Wirth, J. Comput. System Sci. 360 (2005)

  • N. Bansal, A. Blum, S. Chawla, Machine Learning 56, 89 (2004)

    Google Scholar 

  • M. Goemans, D. Williamson, J. ACM 42, 1115 (1995)

    Google Scholar 

  • M. Gaertler, R. Görke, D. Wagner, Significance-driven graph clustering, in Proc. 3rd Intl. Conf. on Algorithmic Aspects in Information and Management, 2007, pp. 11–26

  • V. Chvátal, Linear Programming (Freeman, 1983)

  • H. Karloff, Linear Programming (Birkhäuser, 1991)

  • V. Vazirani, Approximation Algorithms (Springer, 2001)

  • N. Karmarkar, Combinatorica 4, 373 (1984)

  • M. Sales-Pardo, R. Guimera, A. Moreira, L. Amaral, Proc. Natl. Acad. Sci. USA 104, 15224 (2007)

    Google Scholar 

  • M. Fiedler, Czech. Math. J. 25, 619 (1975)

    Google Scholar 

  • B. Borchers, Optim. Meth. Softw. 11, 613 (1999)

    Google Scholar 

  • M. Charikar, A. Wirth, Maximizing quadratic programs: Extending grothendieck’s inequality, in Proc. 45th IEEE Symp. on Foundations of Computer Science, 2004, pp. 54–60

  • Y. Nesterov, Optim. Meth. Softw. 9, 141 (1998)

    Google Scholar 

  • B. Kernighan, S. Lin, Bell Systems Tech. J. 49, 291 (1970)

    Google Scholar 

  • A. Lancichinetti, S. Fortunato, F. Radicchi, New benchmark in community detection, 2008, eprint arXiv: 0805.4770

  • W. Zachary, J. Anthropol. Res. 33, (1977)

  • A. Medus, G. Acuña, C. Dorso, Phys. A Stat. Mech. Appl. 358, 593 (2005)

    Google Scholar 

  • D. Gfeller, J.-C. Chappelier, P. De Los Rios, Phys. Rev. E 72, (2005)

  • F. McSherry, Spectral partitioning of random graphs, in Proc. 42nd IEEE Symp. on Foundations of Computer Science, 2001, pp. 529–537

  • R. Guimerà, M. Sales-Pardo, L. Amaral, Phys. Rev. E, 70, 025101 (2004)

    Google Scholar 

  • P. Gleiser, L. Danon, Advances in Complex Systems 6, 565 (2003)

    Google Scholar 

  • D. Lusseau, Proc. of the Royal Society of London B 270, 186 (2003)

    Google Scholar 

  • D. Knuth, The Stanford GraphBase: A Platform for Combinatorial Algorithms (ACM Press 1993)

  • M. Newman, Phys. Rev. E 64, (2001)

  • H. Jeong, B. Tomber, R. Albert, Z. Oltvai, A.-L. Barabási, Nature 407, 651 (2000)

    Google Scholar 

  • R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, A. Arenas, Phys. Rev. E 68, 065103 (2003)

    Google Scholar 

  • R. Guimerà, L. Amaral, J. Stat. Mech. P02001 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kempe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, G., Kempe, D. Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66, 409–418 (2008). https://doi.org/10.1140/epjb/e2008-00425-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00425-1

PACS

Navigation