Skip to main content
Log in

Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Extremization of the Boltzmann-Gibbs (BG) entropy \(S_{BG}=-k\int dx\,p(x) \ln p(x)\) under appropriate norm and width constraints yields the Gaussian distribution pG(x) ∝e-βx. Also, the basic solutions of the standard Fokker-Planck (FP) equation (related to the Langevin equation with additive noise), as well as the Central Limit Theorem attractors, are Gaussians. The simplest stochastic model with such features is N ↦∞ independent binary random variables, as first proved by de Moivre and Laplace. What happens for strongly correlated random variables? Such correlations are often present in physical situations as e.g. systems with long range interactions or memory. Frequently q-Gaussians, pq(x) ∝[1-(1-q)βx2]1/(1-q) [p1(x)=pG(x)] become observed. This is typically so if the Langevin equation includes multiplicative noise, or the FP equation to be nonlinear. Scale-invariance, e.g. exchangeable binary stochastic processes, allow a systematical analysis of the relation between correlations and non-Gaussian distributions. In particular, a generalized stochastic model yielding q-Gaussians for all (q ≠ 1) was missing. This is achieved here by using the Laplace-de Finetti representation theorem, which embodies strict scale-invariance of interchangeable random variables. We demonstrate that strict scale invariance together with q-Gaussianity mandates the associated extensive entropy to be BG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Anteneodo, C. Tsallis, J. Math. Phys. 44, 5194 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. M.A. Fuentes, M.O. Caceres, Phys. Lett. A 372, 1236 (2008)

    Article  ADS  Google Scholar 

  3. L. Borland, Phys. Lett. A 245, 67 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. A.R. Plastino, A. Plastino, Physica A 222, 347 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197 (1996)

    Article  ADS  Google Scholar 

  6. S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76, 307 (2008); for a more pedagogical version, see S.M.D. Queiros, C. Tsallis, AIP 965, 21 (New York, 2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Tsallis, J. Stat. Phys. 52, 479 (1988); Introduction to Nonextensive Statistical Mechanics — Approaching a Complex World (Springer, New York, 2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment (Pergamon, Oxford, 1970), p. 167

    MATH  Google Scholar 

  9. C. Tsallis, M. Gell-Mann, Y. Sato, Proc. Nat. Acad. Sci. 102, 15377 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. F. Caruso, C. Tsallis, Phys. Rev. E 78, 021101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Pluchino, A. Rapisarda, C. Tsallis, Eur. Phys. Lett. 80, 26002 (2007); A. Pluchino, A. Rapisarda, C. Tsallis, Physica A 387, 3121 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Anteneodo, C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998)

    Article  ADS  Google Scholar 

  13. Y. Yamaguchi, G. Bouchet, T. Dauxois, JSTAT, P01020 (2007)

  14. G. Bouchet, T.T. Dauxois, Phys. Rev. E 72, R045103 (2005)

    Article  ADS  Google Scholar 

  15. A. Upadhyaya, J.-P. Rieu, J.A. Glazier, Y. Sawada, Physica A 293, 549 (2001)

    Article  ADS  Google Scholar 

  16. S. Thurner, N. Wick, R. Hanel, R. Sedivy, L.A. Huber, Physica A 320C, 475 (2003)

    Article  ADS  Google Scholar 

  17. K.E. Daniels, C. Beck, E. Bodenschatz, Physica D 193, 208 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. L.F. Burlaga, A.F. Vinas, Physica A 356, 375 (2005)

    Article  ADS  Google Scholar 

  19. L.F. Burlaga, A.F. Vinas, N.F. Ness, M.H. Acuna, Astrophys. J. 644, L83 (2006)

    Article  ADS  Google Scholar 

  20. P. Douglas, S. Bergamini, F. Renzoni, Phys. Rev. Lett. 96, 110601 (2006)

    Article  ADS  Google Scholar 

  21. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2008)

    Article  ADS  Google Scholar 

  22. U. Tirnakli, C. Beck, C. Tsallis, Phys. Rev. E 75, R040106 (2007); U. Tirnakli, C. Tsallis, C. Beck, Phys. Rev. E 79, 056209 (2009)

    Article  ADS  Google Scholar 

  23. P. Grassberger, Phys. Rev. E 79, 057201 (2009)

    Article  ADS  Google Scholar 

  24. A. Rodriguez, V. Schwammle, C. Tsallis, JSTAT, P09006 (2008)

  25. B. de Finetti, Atti della R. Academia Nazionale dei Lincei 6, Memorie, Classe di Scienze Fisiche, Mathematice e Naturale 4, 251299 (1931); D. Heath, W. Sudderth, Am. Stat. 30, 188 (1976)

    Google Scholar 

  26. E.T. Jaynes, in Bayesian Inference and Decision Techniques with Applications, edited by P.K. Goel, A. Zellner (North-Holland, Amsterdam, 1986), p. 31

    Google Scholar 

  27. E. Hewitt, L.J. Savage, Trans. Am. Math. Soc. 80, 470 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  28. K.P. Nelson, S. Umarov, e-print arXiv:0811.3777v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thurner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanel, R., Thurner, S. & Tsallis, C. Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. Eur. Phys. J. B 72, 263–268 (2009). https://doi.org/10.1140/epjb/e2009-00330-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00330-1

PACS

Navigation