Skip to main content
Log in

The hydrostatic pressure and temperature effects on a hydrogenic impurity in a spherical quantum dot

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The combined effects of the hydrostatic pressure and temperature on the binding energy, Δ E (transition energy), the oscillator strength and the third-order susceptibility of third harmonic generation (THG) of a hydrogenic impurity in a spherical QD, in the presence of the external electric field, have been investigated by means of the perturbation approach within the framework of effective-mass approximation. It is found that the binding energy, Δ E (transition energy), the oscillator strength and the third-order susceptibility of third harmonic generation (THG) of the hydrogenic impurity are affected by the confinement strength, the electric field, pressure and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bastard, Phys. Rev. B 24, 4714 (1981)

    Article  ADS  Google Scholar 

  2. J.L. Zhu, J.J. Xiong, B.L. Gu, Phys. Rev. B 41, 6001 (1990)

    Article  ADS  Google Scholar 

  3. N. Porras-Montenegro et al., Phys. Rev. B 46, 9780 (1992)

    Article  ADS  Google Scholar 

  4. J.L. Movilla, J. Planelles, Phys. Rev. B 71, 075319 (2005)

    Article  ADS  Google Scholar 

  5. J.L. Zhu, X. Chen, Phys. Rev. B 50, 4497 (1994)

    Article  ADS  Google Scholar 

  6. D.S. Chuu, C.M. Hsiao, W.N. Mei, Phys. Rev. B 46, 3893 (1992)

    Article  ADS  Google Scholar 

  7. N.P. Montenegro, S.T.P. Merchancano, Phys. Rev. B 46, 9780 (1992)

    Article  ADS  Google Scholar 

  8. C. Bose, J. Appl. Phys. 83, 3083 (1998)

    Article  ADS  Google Scholar 

  9. C.I. Mendoza, G.J. Vazquez, M.D.C. Mussot, H.N. Specotr. Phys. Status Solidi C 1, 74 (2004)

    Article  ADS  Google Scholar 

  10. F.J. Ribeiro, A. Latge, M. Pacheco, Z. Barticevic, J. Appl. Phys. 82, 270 (1997)

    Article  ADS  Google Scholar 

  11. J.M. Shi, F.M. Peeters, Phys. Rev. B 50, 15182 (1994)

    Article  ADS  Google Scholar 

  12. N. Porras-Montenegro, S.T. Perez-Merchancano, Phys. Rev. B 46, 9780 (1992)

    Article  ADS  Google Scholar 

  13. C.I. Mendoza, G.J. Vazquez, M.D.C. Mussot, H. Specotr. Phys. Rev. B 71, 075330 (2005)

    Article  ADS  Google Scholar 

  14. J.D. Phillips et al., Phys. Status Solidi B 211, 85 (1999)

    Article  ADS  Google Scholar 

  15. S.T. Perez-Merchancano, R. Franco, J. Silva-Valencia, Microelectronics J. 39, 383 (2008)

    Article  Google Scholar 

  16. E. Tangarife, Superlattices and Microstructures 103, 1016 (2010)

    Google Scholar 

  17. C.A. Duquea, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, Appl. Surf. Sci. 256, 7406 (2010)

    Article  ADS  Google Scholar 

  18. N. Leino, T.T. Rantala, Few-Body Syst. 40, 237 (2007)

    Article  ADS  Google Scholar 

  19. C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Superlattices and Microstructures 49, 264 (2011)

    Article  ADS  Google Scholar 

  20. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Article  Google Scholar 

  21. T. Takagahara, Phys. Rev. B 39, 14 (1989)

    Article  Google Scholar 

  22. S. Yımaz, M. Sahin, Phys. Status Solidi B 247, 371 (2010)

    Article  ADS  Google Scholar 

  23. W.F. Xie, Physica B 404, 4142 (2009)

    Article  ADS  Google Scholar 

  24. H.J. Ehrenreich, J. Appl. Phys. 32, 2155 (1961)

    Article  ADS  Google Scholar 

  25. B. Welber, M. Cardona, C.K. Kim, S. Rodriquez, Phys. Rev. B 12, 5729 (1975)

    Article  ADS  Google Scholar 

  26. H.O. Oyoko, N. Parras-Montenegro, S.Y. Lopez, C.A. Duque, Phys. Status Solidi (c) 4, 298 (2007)

    Article  ADS  Google Scholar 

  27. E. Herbert Li, Physica E 5, 215 (2000)

    Article  Google Scholar 

  28. Z.G. Xiao, J.Q. Zhu, F.L. He, Superlattices Microstruct. 19, 137 (1996)

    Article  ADS  Google Scholar 

  29. Y.P. Varshni, Superlattices Microstruct. 23, 145 (1998)

    Article  ADS  Google Scholar 

  30. L.S. Costa, F.V. Prudente, P.H. Acioli, J.J. Soares Neto, J.D.M. Vianna, J. Phys. B At. Mol. Opt. Phys. 32, 2461 (1999)

    Article  ADS  Google Scholar 

  31. T. Takagahara, Phys. Rev. B 36, 9293 (1987)

    Article  ADS  Google Scholar 

  32. W.F. Xie, Physica B 405, 2102 (2010)

    Article  ADS  Google Scholar 

  33. A. John Peter, Physica E 28, 225 (2005)

    Article  ADS  Google Scholar 

  34. E. Kasapoglu, Phys. Lett. A 373, 140 (2008)

    Article  ADS  Google Scholar 

  35. S. Shao, K.X. Guo, Z.H. Zhang, N. Li, C. Peng, Superlattices Microstruct. 48, 541 (2010)

    Article  ADS  Google Scholar 

  36. Z.H. Zhang, K.X. Guo, B. Chen, R.Z. Wang, M.W. Kang, Superlattices Microstruct. 46, 672 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S.J., Xie, W.F. The hydrostatic pressure and temperature effects on a hydrogenic impurity in a spherical quantum dot. Eur. Phys. J. B 81, 79–84 (2011). https://doi.org/10.1140/epjb/e2011-10831-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10831-9

Keywords

Navigation