Skip to main content
Log in

Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl-Teller quantum ring

  • Regular Article
  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using the variational method and the effective mass and parabolic band approximations, the behaviour of the binding energy and photo-ionization cross section of a hydrogenic-like donor impurity in an InAs quantum ring, with Pöschl-Teller confinement potential along the axial direction, has been studied. In the investigation, the combined effects of hydrostatic pressure and electric and magnetic fields applied in the direction of growth have been taken into account. Parallel polarization of the incident radiation and several values of the applied electric and magnetic fields, hydrostatic pressure, and parameters of the Pöschl-Teller confinement potential were considered. The results obtained can be summarised as follows: (1) the influence of the applied electric and magnetic fields and the asymmetry degree of the Pöschl-Teller confinement potential on the donor binding energy is strongly dependent on the impurity position along the growth and radial directions of the quantum ring, (2) the binding energy is an increasing function of hydrostatic pressure and (3) the decrease (increase) in the binding energy with the electric and magnetic fields and parameters of the confinement potential (hydrostatic pressure) leads to a red shift (blue shift) of the maximum of the photo-ionization cross section spectrum of the on-centre impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Petroff, A. Lorker, A. Imamoglu, Phys. Today, 46 (2001)

  2. D. Bimberg, M. Grundman, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley Sons, Chichester, 1999)

  3. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000)

    Article  ADS  Google Scholar 

  4. F. Suárez, D. Granados, M.L. Dotor, M.G. García, Nanotechnology 15, S126 (2004)

    Article  ADS  Google Scholar 

  5. H.S. Ling, S.Y. Wang, C.P. Lee, M.C. Lo, J. Appl. Phys. 105, 034504-1 (2009)

    ADS  Google Scholar 

  6. F. Troiani, U. Hohenester, E. Molinari, Phys. Rev. B 62, R2263 (2000)

    Article  ADS  Google Scholar 

  7. W.E. Kerr, A. Pancholi, V.G. Stoleru, Physica E 35, 139 (2006)

    Article  ADS  Google Scholar 

  8. A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 84, 2223 (2000)

    Article  ADS  Google Scholar 

  9. A.D. Yoffe, Adv. Phys. 50, 1 (2001)

    Article  ADS  Google Scholar 

  10. Z. Barticevic, M. Pacheco, A. Latgé, Phys. Rev. B 62, 6963 (2000)

    Article  ADS  Google Scholar 

  11. A. Bruno-Alfonso, A. Latgé, Phys. Rev. B 61, 15887 (2000)

    Article  ADS  Google Scholar 

  12. B.S. Monozon, P. Schmelcher, Phys. Rev. B 67, 045203 (2003)

    Article  ADS  Google Scholar 

  13. M. Aichinger, S.A. Chin, E. Krotscheck, E. Räsänen, Phys. Rev. B 73, 195310 (2006)

    Article  ADS  Google Scholar 

  14. M. Takikawa, K. Kelting, G. Brunthaler, M. Takeshi, J. Komena, J. Appl. Phys. 65, 3937 (1989)

    Article  ADS  Google Scholar 

  15. M. El-Said, M. Tomak, Solid State Commun. 82, 721 (1992)

    Article  ADS  Google Scholar 

  16. M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Eur. Phys. J. B 72, 521 (2009)

    Article  ADS  Google Scholar 

  17. A. Sali, M. Fliyou, H. Satori, H. Loumrhari, J. Phys. Chem. Solids 64, 31 (2003)

    Article  ADS  Google Scholar 

  18. E. Kasapoglu, U. Yesilgül, H. Sari, I. Sökmen, Physica B 368, 76 (2005)

    Article  ADS  Google Scholar 

  19. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, Physica E 40, 654 (2008)

    Article  ADS  Google Scholar 

  20. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, Superlattices Microstruct. 44, 86 (2008)

    Article  ADS  Google Scholar 

  21. J.D. Correa, N. Porras-Montenegro, C.A. Duque, Phys. Stat. Sol. B 241, 2440 (2004)

    Article  ADS  Google Scholar 

  22. M.G. Barseghyan, A. Hakimyfard, S.Y. López, C.A. Duque, A.A. Kirakosyan, Physica E 42, 1618 (2010)

    Article  ADS  Google Scholar 

  23. M.G. Barseghyan, A. Hakimyfarda, M. Zuhair, C.A. Duque, A.A. Kirakosyan, Proc. SPIE 7998, 79981G (2010)

    Article  ADS  Google Scholar 

  24. S. Flugge, Practical Quantum Mechanics I (Springer-Verlag, Berlin, Heidelberg, 1971)

  25. G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Phys. Rev. B 28, 3241 (1983)

    Article  ADS  Google Scholar 

  26. M.G. Barseghyan, A. Hakimyfard, S.Y. López, C.A. Duque, A.A. Kirakosyan, Physica E 43, 529 (2010)

    Article  ADS  Google Scholar 

  27. H. Yildirim, M. Tomak, Eur. Phys. J. B 50, 559 (2006)

    Article  ADS  Google Scholar 

  28. A.H. Rodríguez, C. Trallero-Ginner, C.A. Duque, G.J. Vázquez, J. Appl. Phys. 105, 044308 (2009)

    Article  ADS  Google Scholar 

  29. S.Q. Wang, H.Q. Ye, J. Phys.: Condens. Matter 17, 4475 (2005)

    Article  ADS  Google Scholar 

  30. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1996)

  31. C. Trallero-Giner, A. Alexandrou, M. Cardona, Phys. Rev. B 38, 10744 (1988)

    Article  ADS  Google Scholar 

  32. G. Lamouche, Y. Lepin, Phys. Rev. B 49, 13452 (1994)

    Article  ADS  Google Scholar 

  33. H. Ham, H.N. Spector, J. Appl. Phys. 93, 3900 (2003)

    Article  ADS  Google Scholar 

  34. M. Sahin, Phys. Rev. B 77, 045317 (2008)

    Article  ADS  Google Scholar 

  35. P.K. Basu, Theory of Optical Processes in Semiconductors (Clarendon Press, Oxford, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Duque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barseghyan, M.G., Mora-Ramos, M.E. & Duque, C.A. Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl-Teller quantum ring. Eur. Phys. J. B 84, 265–271 (2011). https://doi.org/10.1140/epjb/e2011-20650-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20650-7

Keywords

Navigation