Skip to main content
Log in

Amplitude death in systems of coupled oscillators with distributed-delay coupling

  • Regular Article
  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper studies the effects of coupling with distributed delay on the suppression of oscillations in a system of coupled Stuart-Landau oscillators. Conditions for amplitude death are obtained in terms of strength and phase of the coupling, as well as the mean time delay and the width of the delay distribution for uniform and gamma distributions. Analytical results are confirmed by numerical computation of the eigenvalues of the corresponding characteristic equations. These results indicate that larger widths of delay distribution increase the regions of amplitude death in the parameter space. In the case of a uniformly distributed delay kernel, for sufficiently large width of the delay distribution it is possible to achieve amplitude death for an arbitrary value of the average time delay, provided that the coupling strength has a value in the appropriate range. For a gamma distribution of delay, amplitude death is also possible for an arbitrary value of the average time delay, provided that it exceeds a certain value as determined by the coupling phase and the power law of the distribution. The coupling phase has a destabilizing effect and reduces the regions of amplitude death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Uhlhaas, W. Singer, Neuron 52, 155 (2006)

    Article  Google Scholar 

  2. O.V. Popovych, C. Hauptmann, P.A. Tass, Phys. Rev. Lett. 94, 164102 (2005)

    Article  ADS  Google Scholar 

  3. A. Schnitzler, J. Gross, Nat. Rev. Neurosci. 6, 285 (2005)

    Article  Google Scholar 

  4. C.U. Choe, V. Flunkert, P. Hövel, H. Benner, E. Schöll, Phys. Rev. E 75, 0426206 (2007)

    ADS  Google Scholar 

  5. B. Fiedler, V. Flunkert, P. Hövel, E. Schöll, Phil. Trans. R. Soc. A 368, 319 (2010)

    Article  MATH  ADS  Google Scholar 

  6. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (CUP, Cambridge, 2001)

  7. W. Just, A. Pelster, M. Schanz, E. Schöll, Phil. Trans. R. Soc. A 368, 303 (2010)

    Article  MATH  ADS  Google Scholar 

  8. O. D’Huys, R. Vicente, J. Danckaert, I. Fischer, Chaos 20, 043127 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.U. Choe, T. Dahms, P. Hövel, E. Schöll, Phys. Rev. E 81, R025205 (2010)

    Article  ADS  Google Scholar 

  10. V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Phys. Rev. Lett. 105, 254101 (2010)

    Article  ADS  Google Scholar 

  11. E. Schöll, P. Hövel, V. Flunkert, M.A. Dahlem, in Complex Time-Delay Systems, edited by F.M. Atay (Springer, Berlin, 2010), p. 85

  12. T. Heil, I. Fischer, W. Elsässer, J. Mulet, C.R. Mirasso, Phys. Rev. Lett. 86, 795 (2001)

    Article  ADS  Google Scholar 

  13. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Schöll, Phys. Rev. E 79, R065201 (2009)

    Article  ADS  Google Scholar 

  14. K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, I. Fischer, Phys. Rev. E 83, 056211 (2011)

    Article  ADS  Google Scholar 

  15. M.A. Dahlem, G. Hiller, A. Panchuk, E. Schöll, Int. J. Bifurc. Chaos 19, 745 (2009)

    Article  MATH  Google Scholar 

  16. E. Schöll, G. Hiller, P. Hövel, M.A. Dahlem, Phil. Trans. R. Soc. A 367, 1079 (2009)

    Article  MATH  ADS  Google Scholar 

  17. Y.N. Kyrychko, K.B. Blyuss, A. Gonzalez-Buelga, S.J. Hogan, D.J. Wagg, Proc. R. Soc. A 462, 1271 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Y.N. Kyrychko, S.J. Hogan, J. Vib. Control 16, 943 (2010)

    Article  MathSciNet  Google Scholar 

  19. D.V. Ramana Reddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 80, 5109 (1998)

    Article  ADS  Google Scholar 

  20. D.V. Ramana Reddy, A. Sen, G.L. Johnston, Physica D 129, 15 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. S.H. Strogatz, Nature 394, 316 (1998)

    Article  ADS  Google Scholar 

  22. R. Herrero, M. Figueras, J. Rius, F. Pi, G. Orriols, Phys. Rev. Lett. 84, 5312 (2000)

    Article  ADS  Google Scholar 

  23. A. Takamatsu, T. Fujii, I. Endo, Phys. Rev. Lett. 85, 2026 (2000)

    Article  ADS  Google Scholar 

  24. D.G. Aronson, G.B. Ermentrout, N. Kopell, Physica D 41, 403 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. R.E. Mirollo, S.H. Strogatz, J. Statist. Phys. 60, 245 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. A. Gjurchinovski, V. Urumov, Europhys. Lett. 84, 40013 (2008)

    Article  ADS  Google Scholar 

  27. A. Gjurchinovski, V. Urumov, Phys. Rev. E 81, 016209 (2010)

    Article  ADS  Google Scholar 

  28. S.A. Gourley, J.W.-H. So, Proc. R. Soc. Edinburgh 133, 527 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Faria, S. Trofimchuk, Nonlinearity 23, 2457 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. G. Kiss, B. Krauskopf, Dynamical Systems 26, 85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. W. Michiels, V. Van Assche, S.-I. Niculescu, IEEE Trans. Automat. Contr. 50, 493 (2005)

    Article  Google Scholar 

  32. A. Thiel, H. Schwegler, C.W. Eurich, Complexity 8, 102 (2003)

    Article  MathSciNet  Google Scholar 

  33. C.W. Eurich, A. Thiel, L. Fahse, Phys. Rev. Lett. 94, 158104 (2005)

    Article  ADS  Google Scholar 

  34. K.B. Blyuss, Y.N. Kyrychko, Bull. Math. Biol. 72, 490 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. F. Atay, Phys. Rev. Lett. 91, 094101 (2003)

    Article  ADS  Google Scholar 

  36. R. Sipahi, F.M. Atay, S.-I. Niculescu, SIAM J. Appl. Math. 68, 738 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. S.A. Campbell, R. Jessop, Mathematical Modelling Natural Phenomena 4, 1 (2009)

    MATH  MathSciNet  Google Scholar 

  38. S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll, F. Henneberger, Phys. Rev. Lett. 97, 213902 (2006)

    Article  ADS  Google Scholar 

  39. A.P.A. Fischer, O.K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, IEEE J. Quantum Electron. 36, 375 (2000)

    Article  ADS  Google Scholar 

  40. D. Breda, S. Maset, R. Vermiglioa, Appl. Numer. Math. 56, 318 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Hövel, E. Schöll, Phys. Rev. E 72, 046203 (2005)

    Article  Google Scholar 

  42. N. MacDonald, Time lags in biological systems (Springer, New York, 1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Kyrychko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyrychko, Y.N., Blyuss, K.B. & Schöll, E. Amplitude death in systems of coupled oscillators with distributed-delay coupling. Eur. Phys. J. B 84, 307–315 (2011). https://doi.org/10.1140/epjb/e2011-20677-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20677-8

Keywords

Navigation