Skip to main content
Log in

Hydrogenic impurity states in CdSe/ZnS and ZnS/CdSe core-shell nanodots with dielectric mismatch

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Within the effective mass approximation we theoretically studied the electronic properties of CdSe/ZnS and ZnS/CdSe core-shell quantum dots surrounded by wide-gap dielectric materials. The finite element method is used to obtain the lowest impurity levels and the carrier spatial distribution within the dot. We found that in these zero-dimensional semiconductor structures the electron energy is sensitively dependent on the dielectric constants of the embedding and on the heterostructure geometry. The influence of polarization charges on the binding energy of hydrogenic impurities off-center located is also investigated. The results suggest that in dielectrically modulated nanodots the donor energy can be tuned to a large extent by the structure design, the impurity position and a proper choice of the dielectric media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Dane, H. Akbas, S. Minez, A. Guleroglu, Physica E 41, 278 (2008)

    Article  ADS  Google Scholar 

  2. E. Sadeghi, Physica E 41, 1319 (2009)

    Article  ADS  Google Scholar 

  3. M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Eur. Phys. J. B 72, 521 (2009)

    Article  ADS  Google Scholar 

  4. V.I. Klimov, A.A. Mikhailovsky, S. Xu, J.A. Holingsworth, Science 290, 314 (2000)

    Article  ADS  Google Scholar 

  5. M. Dybiec, G. Chomokur, S. Ostapenko, A. Wolcott, J.Z. Zhang, A. Zajac, C. Phelan, T. Sellers, G. Gerion, Appl. Phys. Lett. 90, 263112 (2007)

    Article  ADS  Google Scholar 

  6. D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss, A.P. Alivisatos, J. Phys. Chem. B 105, 8861 (2001)

    Article  Google Scholar 

  7. R. Tsu, D. Babić, Appl. Phys. Lett. 64, 1806 (1994)

    Article  ADS  Google Scholar 

  8. J.L. Movilla, J. Planelles, Comput. Phys. Commun. 170, 144 (2005)

    Article  ADS  Google Scholar 

  9. V.A. Belyakov, V.A. Burdov, Nano. Res. Lett. 2, 569 (2007)

    Article  Google Scholar 

  10. E.C. Niculescu, Eur. Phys. J. B 79, 363 (2011)

    Article  ADS  Google Scholar 

  11. E.C. Niculescu, M. Cristea, Eur. Phys. J. B 84, 59 (2011)

    Article  ADS  Google Scholar 

  12. V.I. Boichuk, I.V. Bilynskyi, R.Y. Leshko, L.M. Turyanska, Physica E 44, 476 (2011)

    Article  ADS  Google Scholar 

  13. M. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996)

    Article  Google Scholar 

  14. A.C. Bartnik, F.W. Wise, A. Kigel, E. Lifshitz, Phys. Rev. B 75, 245424 (2007)

    Article  ADS  Google Scholar 

  15. X. Feng, G. Xiong, X. Zhang, H. Gao, Physica B 383, 207 (2006)

    Article  ADS  Google Scholar 

  16. M. Iwamatsu, K. Horii, Jpn J. Appl. Phys. 36, 6416 (1997)

    Article  ADS  Google Scholar 

  17. V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Physica E 41, 1522 (2009)

    Article  ADS  Google Scholar 

  18. L.P. Balet, S.A. Ivanov, A. Piryatinski, M. Achermann, V.I. Klimov, Nano. Lett. 4, 1485 (2004)

    Article  ADS  Google Scholar 

  19. M. Bär, S. Lehmann, M. Rusu, A. Grimm, I. Kötschau, I. Lauermann, P. Pistor, S. Sokoll, Th. Schedel-Niedrig, M. Ch. Lux-Steiner, Ch.-H. Fischerb, L. Weinhardt, C. Heske, Ch. Jung, Appl. Phys. Lett. 86, 222107 (2005)

    Article  ADS  Google Scholar 

  20. Q. Shen, T. Toyoda, Jpn J. Appl. Phys., Part 1 43, 2946 (2004)

    Article  Google Scholar 

  21. J. Zhao, J. Zhang, C. Jiang, J. Bohnenberger, T. Basché, A. Mews, J. Appl. Phys. 96, 3206 (2004)

    Article  ADS  Google Scholar 

  22. M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys. 82, 5837 (1997)

    Article  ADS  Google Scholar 

  23. S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003)

    Article  Google Scholar 

  24. E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. LeQuang, I. Ledoux-Rak, J. Zyss, J. Phys. Chem. B 110, 25356 (2006)

    Article  Google Scholar 

  25. A. Joshi, K.Y. Narsingi, M.O. Manasreh, E.A. Davis, B.D. Weaver, Appl. Phys. Lett. 89, 131907 (2006)

    Article  ADS  Google Scholar 

  26. S. Min Kim, H.-S. Yang, Current Appl. Phys. 11, 1249 (2011)

    Article  ADS  Google Scholar 

  27. G. Kalyuzhny, R.W. Murray, J. Phys. Chem. B 109, 7012 (2005)

    Article  Google Scholar 

  28. C. Bullen, P. Mulvaney, Langmuir 22, 3007 (2006)

    Article  Google Scholar 

  29. A. Antipov, M. Bell, M. Yasar, V. Mitin, W. Scharmach, M. Swihart, A. Verevkin, A. Sergeev, Nano. Res. Lett. 6, 142 (2011)

    Article  Google Scholar 

  30. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354 (1994)

    Article  ADS  Google Scholar 

  31. M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys. 82, 5837 (1997)

    Article  ADS  Google Scholar 

  32. M. Gao, B. Richter, S. Kirstein, H. Möhwald, J. Phys. Chem. B 102, 4096 (1998)

    Article  Google Scholar 

  33. B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, M.F. Rubner, Appl. Phys. Lett. 66, 1316 (1995)

    Article  ADS  Google Scholar 

  34. J. Lee, M. Mathai, F. Jain, F. Papadimitrakopoulos, J. Nanosci. Nanotechnol. 1, 59 (2001)

    Article  Google Scholar 

  35. N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science 295, 1506 (2002)

    Article  ADS  Google Scholar 

  36. J. Zhou, L. Li, Z. Gui, X. Zhang, D.J. Barber, Nanostruct. Mater. 8, 321 (1997)

    Article  Google Scholar 

  37. J. Zhou, L. Li, Z. Gui, X. Zhang, Ferroelectrics 196, 405 (1997)

    Google Scholar 

  38. J. Zhou, L. Li, Z. Gui, S. Buddhudu, Y. Zhou, Appl. Phys. Lett. 76, 1540 (2000)

    Article  ADS  Google Scholar 

  39. S. Hong, J. Singh, J. Appl. Phys. 61, 5346 (1987)

    Article  ADS  Google Scholar 

  40. A. Joshi, K.Y. Narsingi, M.O. Manasreh, E.A. Davis, B.D. Weaver, Appl. Phys. Lett. 89, 131907 (2006)

    Article  ADS  Google Scholar 

  41. T.V. Torchynska, J. Douda, R. Peña Sierra, Phys. Status Solidi C 6, S143 (2009)

    Article  ADS  Google Scholar 

  42. J. Zhou, L. Li, Z. Gui, S. Buddhudu, Y. Zhou, Appl. Phys. Lett. 76, 1540 (2000)

    Article  ADS  Google Scholar 

  43. C. Delerue, M. Lannoo, Nanostructures. Theory and Modelling (Springer-Verlag, Berlin Heidelberg, 2004)

  44. M. Royo, J.I. Climente, J.I. Movilla, J. Planelles, J. Phys. Condens. Matter 23, 015301 (2011)

    Article  ADS  Google Scholar 

  45. D. Kammerlander, F. Troiani, G. Goldoni, Phys. Rev. B 81, 115310 (2010)

    Article  ADS  Google Scholar 

  46. Bin Li, A.F. Slachmuylders, B. Partoens, W. Magnus, F.M. Peeters, Phys. Rev. B 77, 115335 (2008)

    Article  ADS  Google Scholar 

  47. M. Cristea, E.C. Niculescu, Int. J. Quant. Chem. 112, 1737 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Niculescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristea, M., Niculescu, E.C. Hydrogenic impurity states in CdSe/ZnS and ZnS/CdSe core-shell nanodots with dielectric mismatch. Eur. Phys. J. B 85, 191 (2012). https://doi.org/10.1140/epjb/e2012-21051-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-21051-2

Keywords

Navigation