Skip to main content
Log in

Structural and electronic properties of BeO nanotubes filled with Cu nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structural and electronic properties of Cu5-1 and Cu6-1 nanowires with core-shell structures encapsulated inside a series zigzag (n,0) BeONTs denoted by Cu5-1@(n,0) and Cu6-1@(n,0) are investigated using the first-principles calculations within the generalized-gradient approximation. For Cu5-1@(n,0) (10 ⩽ n ⩽ 17) and Cu6-1@(n,0) (11 ⩽ n ⩽ 18) combined systems, the initial shapes (cylindrical BeONTs and CuNWs) are preserved without any visible change after optimization. The quantum conductances 5G 0 and 6G 0 of the most stable Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are identical to the corresponding free-standing Cu5-1 and Cu6-1 nanowires, respectively. The energy bands crossing the Fermi level in both the Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are all originated from the inner CuNWs. Therefore the electron transport will occur only through the inner CuNWs and the outer inert BeONTs serves well as an insulating cable sheath. The robust quantum conductance of the Cu5-1 and Cu6-1 nanowires, the insulating protection character of the (12,0) and (13,0) BeONTs and the highest stability of the tube-wire combined systems make the Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are top-priority in the ULSI circuits and MEMS devices that demand steady transport of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Li, N.Q. Zhao, C.N. He, C.S. Shi, X.W. Du, J.J. Li, Alloys Compd. 465, 51 (2008)

    Article  Google Scholar 

  2. V.V. Ivanovskaya, C. Köhler, G. Seifert, Phys. Rev. B 75, 075410 (2007)

    Article  ADS  Google Scholar 

  3. J.C. González, V. Rodrigues, J. Bettini, L.G.C. Rego, A.R. Rocha, P.Z. Coura, S.O. Dantas, F. Sato, D.S. Galvão, D. Ugarte, Phys. Rev. Lett. 93, 126103 (2004)

    Article  ADS  Google Scholar 

  4. V.K. Sutrakar, D.R. Mahapatra, Nanotechnology 20, 045701 (2009)

    Article  ADS  Google Scholar 

  5. Y. Kondo, K. Takayanagi, Science 289, 606 (2000)

    Article  ADS  Google Scholar 

  6. C.Z. Li, H.X. He, A. Bogozi, J.S. Bunch, N. Tao, J. Appl. Phys. Lett. 76, 1333 (2000)

    Article  ADS  Google Scholar 

  7. H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998)

    Article  ADS  Google Scholar 

  8. A.I. Yanson, G.R. Bollinger, H.E. van den Brom, N. Agrait, J.M. van Ruitenbeek, Nature 395, 783 (1998)

    Article  ADS  Google Scholar 

  9. S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372, 159 (1994)

    Article  ADS  Google Scholar 

  10. S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 362, 520 (1993)

    Article  ADS  Google Scholar 

  11. D. Golberg, P.M.F.J. Costa, M. Mitome, S. Hampel, D. Haase, C. Mueller, A. Leonhardt, Y. Bando, Adv. Mater. 19, 1937 (2007)

    Article  Google Scholar 

  12. B. Deng, A.W. Xu, G.Y. Chen, R.Q. Song, L.P. Chen, J. Phys. Chem. B 110, 11711 (2006)

    Article  Google Scholar 

  13. Y. Guo, Y. Kong, W. Guo, H. Gao, J. Comput. Theor. Nanosci. 1, 93 (2004)

    Google Scholar 

  14. X.J. Du, J.M. Zhang, S.F. Wang, K.W. Xu, V. Ji, Eur. Phys. J. B 72, 119 (2009)

    Article  ADS  Google Scholar 

  15. X.J. Du, Z. Chen, J. Zhang, C.S. Yao, C. Chen, X.L. Fan, Phys. Stat. Sol. B 249, 1033 (2012)

    Article  ADS  Google Scholar 

  16. J.J. Zhao, A. Buldum, J. Han, J.P. Liu, Nanotechnology 13, 195 (2002)

    Article  ADS  Google Scholar 

  17. R. Tenne, Chem. Eur. J. 8, 5297 (2002)

    Article  Google Scholar 

  18. C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)

    Article  Google Scholar 

  19. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.J. Choi, P. Yang, Nature 422, 599 (2003)

    Article  ADS  Google Scholar 

  20. A.N. Enyashin, G. Seifert, A.L. Ivanovskii, JETP Lett. 80, 608 (2004)

    Article  ADS  Google Scholar 

  21. L.A. Chernozatonskii, V.I. Artyukhov, P.B. Sorokin, Phys. Rev. B 74, 045402 (2006)

    Article  ADS  Google Scholar 

  22. P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonskii, Phys. Solid State 48, 398 (2006)

    Article  ADS  Google Scholar 

  23. G.Y. Zhang, E.G. Wang, Appl. Phys. Lett. 82, 1926 (2003)

    Article  ADS  Google Scholar 

  24. R.Z. Ma, Y. Bando, T. Sato, Chem. Phys. Lett. 350, 1 (2001)

    Article  ADS  Google Scholar 

  25. D. Golberg, Y. Bando, K. Kurashima, T. Sato, J. Nanosci. Nanotechnol. 1, 49 (2001)

    Article  Google Scholar 

  26. D. Golberg, F.F. Xu, Y. Bando, Appl. Phys. A 76, 479 (2003)

    Article  ADS  Google Scholar 

  27. C.C. Tang, Y. Bando, D. Golberg, X.X. Ding, S.R. Qi, J. Phys. Chem. B 107, 6539 (2003)

    Article  Google Scholar 

  28. W.Q. Han, C.W. Chang, A. Zettl, Nano Lett. 4, 1355 (2004)

    Article  ADS  Google Scholar 

  29. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  30. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  31. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  32. G. Kresse, D. Joubert, Phys. Rev. B 59, 17585 (1999)

    Google Scholar 

  33. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  34. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

  36. A. Soon, M. Todorova, B. Delley, C. Stampfl, Phys. Rev. B 73, 165424 (2006)

    Article  ADS  Google Scholar 

  37. B.L. Wang, J.J. Zhao, X.S. Chen, D. Shi, G.H. Wang, Nanotechnology 17, 3178 (2006)

    Article  ADS  Google Scholar 

  38. P. Sen, O. Gülseren, T. Yildirim, I.P. Batra, S. Ciraci, Phys. Rev. B 65, 235433 (2002)

    Article  ADS  Google Scholar 

  39. L.C. Ma, J.M. Zhang, K.W. Xu, Physica B 410, 105 (2013)

    Article  ADS  Google Scholar 

  40. J.W. Zhu, D.N. Shi, J.J. Zhao, B.L. Wang, Nanotechnology 21, 185703 (2010)

    Article  ADS  Google Scholar 

  41. K.M. Alam, A.K. Ray, Phys. Rev. B 77, 035436 (2008)

    Article  ADS  Google Scholar 

  42. B. Baumeier, P. Krüger, J. Pollmann, Phys. Rev. B 76, 085407 (2007)

    Article  ADS  Google Scholar 

  43. H. Xu, F. Zhan, A.L. Rosa, Th. Frauenheim, R.Q. Zhang, Solid State Commun. 148, 534 (2008)

    Article  ADS  Google Scholar 

  44. P.B. Sorokin, A.S. Fedorov, L.A. Chernozatonski, Phys. Solid State 48, 398 (2006)

    Article  ADS  Google Scholar 

  45. J.J. Zhao, C. Buia, J. Han, J.P. Lu, Nanotechnology 14, 501 (2003)

    Article  ADS  Google Scholar 

  46. A.I. Mares, J.M.V. Ruitenbeek, Phys. Rev. B 72, 205402 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, YN., Zhang, JM., Xu, KW. et al. Structural and electronic properties of BeO nanotubes filled with Cu nanowires. Eur. Phys. J. B 86, 364 (2013). https://doi.org/10.1140/epjb/e2013-40442-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40442-3

Keywords

Navigation