Skip to main content
Log in

Continuous pole placement method for time-delayed feedback controlled systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Continuous pole placement method is adapted to time-periodic states of systems with time delay. The method is applied for finding an optimal control matrix in the problem of stabilization of unstable periodic orbits of dynamical systems via time-delayed feedback control algorithm. The optimal control matrix ensures the fastest approach of a perturbed system to the stabilized orbit. An application of the pole placement method to systems with time delay meets a fundamental problem, since the number of the Floquet exponents is infinity, while the number of control parameters is finite. Nevertheless, we show that several leading Floquet exponents can be efficiently controlled. The method is numerically demonstrated for the Lorenz system, which until recently has been considered as a system inaccessible for the standard time-delayed feedback control due to the odd-number limitation. The proposed optimization method is also adapted for an extended time-delayed feedback control algorithm and numerically demonstrated for the Rössler system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008)

  2. K. Pyragas, Phys. Lett. A 170, 421 (1992)

    Article  ADS  Google Scholar 

  3. K. Pyragas, Philos. Trans. R. Soc. London, Ser. A 364, 2309 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. J.E.S. Socolar, D.W. Sukow, D.J. Gauthier, Phys. Rev. E 50, 3245 (1994)

    Article  ADS  Google Scholar 

  5. K. Pyragas, Phys. Lett. A 206, 323 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. T. Jüngling, A. Gjurchinovski, V. Urumov, Phys. Rev. E 86, 046213 (2012)

    Article  ADS  Google Scholar 

  7. A. Gjurchinovski, T. Jüngling, V. Urumov, E. Schöll, Phys. Rev. E 88, 032912 (2013)

    Article  ADS  Google Scholar 

  8. K. Höhne, H. Shirahama, C.U. Choe, H. Benner, K. Pyragas, W. Just, Phys. Rev. Lett. 98, 214102 (2007)

    Article  ADS  Google Scholar 

  9. A. Tamaševičius, G. Mykolaitis, V. Pyragas, K. Pyragas, Phys. Rev. E 76, 026203 (2007)

    Article  ADS  Google Scholar 

  10. K. Pyragas, V. Pyragas, Phys. Rev. E 80, 067201 (2009)

    Article  ADS  Google Scholar 

  11. V. Pyragas, K. Pyragas, Phys. Lett. A 375, 3866 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. V. Pyragas, K. Pyragas, Eur. Phys. J. B 86, 306 (2013)

    Article  ADS  Google Scholar 

  13. K. Yamasue, K. Kobayashib, H. Yamada, K. Matsushige, T. Hikihara, Phys. Lett. A 373, 3140 (2009)

    Article  ADS  Google Scholar 

  14. J. Sieber, A. Gonzalez-Buelga, S.A. Neild, D.J. Wagg, B. Krauskopf, Phys. Rev. Lett. 100, 244101 (2008)

    Article  ADS  Google Scholar 

  15. D.A.W. Barton, J. Sieber, Phys. Rev. E 87, 052916 (2013)

    Article  ADS  Google Scholar 

  16. A. Pimenov, A.G. Vladimirov, S.V. Gurevich, K. Panajotov, G. Huyet, M. Tlidi, Phys. Rev. A 88, 053830 (2013)

    Article  ADS  Google Scholar 

  17. M. Iñarrea, V. Lanchares, A.I. Pascual, J.P. Salas, Acta Astronautica 96, 280 (2014)

    Article  ADS  Google Scholar 

  18. K. Konishi, Y. Sugitani, N. Hara, Phys. Rev. E 89, 022906 (2014)

    Article  ADS  Google Scholar 

  19. S. Shao, K. Masri, M. Younis, Nonlinear Dyn. 74, 257 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Jin, H. Hu, Commun. Nonlinear. Sci. Numer. Simul. 18, 1027 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. M. Xiao, W.X. Zheng, J. Cao, Neural Netw. 44, 132 (2013)

    Article  MATH  Google Scholar 

  22. D.A. Strehober, E. Schöll, S.H.L. Klapp, Phys. Rev. E 88, 062509 (2013)

    Article  ADS  Google Scholar 

  23. J.B. Gonpe Tafo, L. Nana, T.C. Kofane, Phys. Rev. E 88, 032911 (2013)

    Article  ADS  Google Scholar 

  24. H. Nakajima, Phys. Lett. A 232, 207 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. H. Nakajima, Y. Ueda, Phys. Rev. E 58, 1757 (1998)

    Article  ADS  Google Scholar 

  26. K. Pyragas, Phys. Rev. Lett. 86, 2265 (2001)

    Article  ADS  Google Scholar 

  27. K. Pyragas, V. Pyragas, H. Benner, Phys. Rev. E 70, 056222 (2004)

    Article  ADS  Google Scholar 

  28. V. Pyragas, K. Pyragas, Phys. Rev. E 73, 036215 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, E. Schöll, Phys. Rev. Lett. 98, 114101 (2007)

    Article  ADS  Google Scholar 

  30. E.W. Hooton, A. Amann, Phys. Rev. Lett. 109, 154101 (2012)

    Article  ADS  Google Scholar 

  31. A. Amann, E.W. Hooton, Phil. Trans. R. Soc. A 371, 20120463 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Pyragas, V. Novičenko, Phys. Rev. E 88, 012903 (2013)

    Article  ADS  Google Scholar 

  33. S. Steingrube, M. Timme, F. Worgotter, P. Manoonpong, Nat. Phys. 6, 224 (2010)

    Article  Google Scholar 

  34. R.C. Hinz, P. Hövel, E. Schöll, Chaos 21, 023114 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Ackermann, Siam J. Optim. 7, 297 (1972)

    Google Scholar 

  36. W. Michiels, K. Engelgorghs, P. Vansenant, D. Roose, Automatica 38, 747 (2002)

    Article  MATH  Google Scholar 

  37. J. Burke, A. Lewis, M. Overton, SIAM J. Optim. 15, 751 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. J. Vanbiervliet, K. Verheyden, W. Michels, S. Vandewalle, ESAIM: COCV 14, 478 (2008)

    Article  MATH  Google Scholar 

  39. W. Mishels, D. Roose, Int. J. Bifurc. Chaos 12, 1309 (2002)

    Article  Google Scholar 

  40. H. Huijberts, W. Michiels, H. Nijmeijer, SIAM J. Appl. Dyn. Syst. 8, 1 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. C. Bick, M. Timme, C. Kolodziejski, SIAM J. Appl. Dyn. Syst. 4, 1310 (2012)

    Article  MathSciNet  Google Scholar 

  42. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  43. O.E. Rössler, Phys. Lett. A 57, 397 (1976)

    Article  ADS  Google Scholar 

  44. K. Engelborghs, T. Luzyanina, G. Samaey, Tech. Rep., Departament of Computer Science, K.U. Leuven, 2001

  45. C.G. Broyden, Math. Comput. 19, 577 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  46. K. Pyragas, Phys. Rev. E 66, 026207 (2002)

    Article  ADS  Google Scholar 

  47. D.J. Tweten, B.P. Mann, Phys. Rev. E 86, 046214 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoras Pyragas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyragas, V., Pyragas, K. Continuous pole placement method for time-delayed feedback controlled systems. Eur. Phys. J. B 87, 274 (2014). https://doi.org/10.1140/epjb/e2014-50401-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50401-1

Keywords

Navigation